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cumulative reward over time (starting from a particular state):

r0  +  r1  +  r2  +  r3  +  r4  +  . . .

A policy tells the agent what actions to choose in each state

The optimal policy is the one that maximizes
the cumulative reward for all states

The value V*(s) of a state s is how much cumulative reward the agent
can achieve by starting in that state and following the optimal policy  
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Generally speaking, agents value immediate rewards over delayed rewards

The more delayed a reward is in the future, the less value it has to the agent

The value function V*(s) reflects this idea by multiplying each future reward
by a discount factor between 0 and 1 for every time step it is delayed

Example:  discount factor = 0.8

discounted cumulative reward starting in state s0 is
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Value of state 0 (Rosie standing in location 0 but ball is gone)

R _ _ _ _ _ _ _ _ _ _ _ 

Maximum cumulative reward possible is 0

V*(0) =  0

Value of state 1 (Rosie standing in location 0 next to the ball)

oR _ _ _ _ _ _ _ _ _ _ _ 

Action chosen by the optimal policy: kick
Reward: 10
New state: 0 (Rosie still in location 0 but ball is now gone)

V*(1) =  10  +  0.8 × V*(0)
=  10
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Value of state 2 (Rosie standing 1 step away from the ball)

o R _ _ _ _ _ _ _ _ _ _ _ 

Action chosen by the optimal policy: forward
Reward: 0
New state: 1 (Rosie standing in location 0 next to the ball)

V*(2) =  0  +  0.8 × V*(1)
=  0.8 × 10
=  8

Value of state 3 (Rosie standing 2 steps away from the ball)

o _ R _ _ _ _ _ _ _ _ _ 

Action chosen by the optimal policy: forward
Reward: 0
New state: 2 (Rosie standing 1 step away from the ball)

V*(3) =  0  +  0.8 × V*(2)
=  0  +  0.8 × 8
=  6.4    < V*(2) or V*(1) because payoff is further in the future  
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The environment is described by two functions:

reward function r

rt  =  r(st , at)  is the reward received for performing
     action at in state st

state transition function δ

st +1  =  δ(st , at)  is the new state that results from
   performing action at  in state st

r and δ may be nondeterministic or unknown to the agent,
meaning that the agent may be unable to predict the results
of its actions
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If an agent had perfect knowledge of the value function V*, the reward
function r, and the state transition function δ, it could always choose the
best action from any state s:
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If an agent had perfect knowledge of the value function V*, the reward
function r, and the state transition function δ, it could always choose the
best action from any state s:

It knows the reward function r,
so it knows what rewards
would result from each action 

state s

  

If an agent had perfect knowledge of the value function V*, the reward
function r, and the state transition function δ, it could always choose the
best action from any state s:

It knows the reward function r,
so it knows what rewards
would result from each action 

state s



  

If an agent had perfect knowledge of the value function V*, the reward
function r, and the state transition function δ, it could always choose the
best action from any state s:

And it knows the value function
V*, so it knows how much
cumulative reward it could
gain from each of the new
resulting states state s
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If an agent had perfect knowledge of the value function V*, the reward
function r, and the state transition function δ, it could always choose the
best action from any state s:

So it can calculate the total amount
of cumulative reward it would gain
from each of the possible actions,
and then choose the best one

But the agent doesn't actually know any of these functions!
It only knows the current state s and the available actions a1, a2, a3
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If an agent had perfect knowledge of the value function V*, the reward
function r, and the state transition function δ, it could always choose the
best action from any state s:
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What if the agent knew the Q function without knowing anything
about the functions V*, r, and δ that are “hidden inside” of it?

Let's call this desirable quantity Q

Q(s, a) = r(s, a) + γ V*(δ(s, a))

The agent could simply compare 
the values of Q(s, a1), Q(s, a2),
and Q(s, a3) directly, and choose 
the best action
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Example: Robby the Robot
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Step 1: determine the current situation
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Step 2: choose an action to perform
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Step 3: observe reward and new situation

EEEEC#2
#1

EEEEW#3
EEECE#4
EEECC#5
EEECW#6
EEEWE#7
EEEWC#8

WWWWW#243

. . .

EEEEE

North   South   East   West   StayPut   PickUpCan   RandomMoveSituation

Reward:  +10

2.9        -0.4       3.5       8.9         -6.7             10.2                    4.4

  

Step 3: observe reward and new situation

EEEEC#2
#1

EEEEW#3
EEECE#4
EEECC#5
EEECW#6
EEEWE#7
EEEWC#8

WWWWW#243

. . .

EEEEE

North   South   East   West   StayPut   PickUpCan   RandomMoveSituation

Reward:  +10

2.9        -0.4       3.5       8.9         -6.7             10.2                    4.4



  

Step 4: find max Q-value for new situation
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Step 5: update Q-value for previous action
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. . . and repeat many, many times!
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Q(s, a)   ← r(s, a) + γ maxa'{Q(δ(s, a), a')}

This Q update rule assumes that the reward function r
and the state transition function δ are deterministic

What if the environment is nondeterministic?
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Q(s, a)   ← r(s, a) + γ maxa'{Q(δ(s, a), a')}

Instead of just replacing the current value of Q(s, a)
by the new value  r(s, a) + γ maxa'{Q(δ(s, a), a')},
we will calculate a weighted average of the current
Q value and the new value

Weighted average of X and Y   =   (1 – α) X  +  α Y

where  0 < α < 1

Examples: α = 0.3 0.7 X + 0.3 Y
 

α = 0.5   0.5 X + 0.5 Y=  (X + Y)/2

α = 0 X

α = 1 Y
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How to choose actions?

Naïve strategy: at each time step, choose the action a that maximizes
the value of Q(s, a) for the current state s

This exploits the current Q-table knowledge, but doesn't explore
the state-action space any further

This is dangerous, because the Q-table values could be way off
(and they almost certainly will be at the start of training)

“Epsilon greedy” approach:

With probability ε, choose a random action

With probability (1 – ε), choose the action that maximizes Q(s, a)

Good strategy: start with high ε and gradually decrease it over the run  
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