Q Learning

A policy tells the agent what actions to choose in each state

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$$

cumulative reward over time (starting from a particular state):

$$r0 + r1 + r2 + r3 + r4 + \dots$$

The **optimal policy** is the one that maximizes the cumulative reward for all states

The value $V^*(s)$ of a state *s* is how much cumulative reward the agent can achieve by starting in that state and following the optimal policy

Generally speaking, agents value immediate rewards over delayed rewards

The more delayed a reward is in the future, the less value it has to the agent

The value function $V^*(s)$ reflects this idea by multiplying each future reward by a **discount factor** between 0 and 1 for every time step it is delayed

Example: discount factor = 0.8

discounted cumulative reward starting in state *s0* is

 $r0 + 0.8 \times r1 + 0.8 \times 0.8 \times r2 + 0.8 \times 0.8 \times 0.8 \times r3 + \dots$

In general, with a discount factor of γ , the value of state *s* is

$$V^*(s) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots$$

Value of **state 0** (Rosie standing in location 0 but ball is gone)

Maximum cumulative reward possible is 0

 $\mathbf{V}^*(0) = \mathbf{0}$

Value of **state 1** (Rosie standing in location 0 next to the ball)

oR _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Action chosen by the optimal policy: *kick* Reward: 10 New state: 0 (Rosie still in location 0 but ball is now gone)

$$V^{*}(1) = 10 + 0.8 \times V^{*}(0)$$

= 10

Value of state 2 (Rosie standing 1 step away from the ball)

Action chosen by the optimal policy: *forward* Reward: 0 New state: 1 (Rosie standing in location 0 next to the ball)

$$V^{*}(2) = 0 + 0.8 \times V^{*}(1) = 0.8 \times 10 = 8$$

Value of **state 3** (Rosie standing 2 steps away from the ball)

o _ R _ _ _ _ _ _ _ _ _ _

Action chosen by the optimal policy: *forward* Reward: 0 New state: 2 (Rosie standing 1 step away from the ball)

$$V^{*}(3) = 0 + 0.8 \times V^{*}(2)$$

= 0 + 0.8 × 8
= 6.4 < V^{*}(2) or V^{*}(1) because payoff is further in the future

The environment is described by two functions:

reward function r

$$r_t = r(s_t, a_t)$$
 is the reward received for performing
action a_t in state s_t

state transition function $\boldsymbol{\delta}$

$$s_{t+1} = \delta(s_t, a_t)$$
 is the new state that results from
performing action a_t in state s_t

r and δ may be **nondeterministic** or **unknown** to the agent, meaning that the agent may be unable to predict the results of its actions

But the agent doesn't actually know any of these functions! It only knows the **current state** *s* and the available **actions** a_1, a_2, a_3

But the agent doesn't actually know any of these functions! It only knows the **current state** *s* and the available **actions** a_1, a_2, a_3 What if the agent **knew the Q function** without knowing anything about the functions V*, *r*, and δ that are "hidden inside" of it?

What if the agent **knew the Q function** without knowing anything about the functions V^{*}, *r*, and δ that are "hidden inside" of it?

What if the agent **knew the Q function** without knowing anything about the functions V^{*}, *r*, and δ that are "hidden inside" of it?

What if the agent **knew the Q function** without knowing anything about the functions V*, *r*, and δ that are "hidden inside" of it?

Q Learning Algorithm

- Let Q denote the true Q function (*i.e.*, the target function).
- Let Q' denote an approximation to Q
- We can represent Q' by a table:

• Algorithm:

- 1. Initialize all Q' table entries to 0 (or random values)
- 2. Observe the current state *s*
- 3. Repeat:
 - a. Choose an action *a* and execute it
 - b. Receive immediate reward r
 - c. Observe the resulting state s_{new}
 - d. Update Q' entry for s and a: Q'(s, a) \leftarrow r + \gamma \max_{a'} \{Q'(s_{new}, a')\}
 - e. Update current state: $s \leftarrow s_{new}$

Example: Robby the Robot

Step 1: determine the current situation

Step 2: choose an action to perform

Si	tuation	North	South	East	West	StayPut	PickUpCan	RandomMove
#1	EEEEE							
#2	EEEEC							
#3	EEEEW							
#4	EEECE							
#5	EEECC	2.9	-0.4	3.5	8.9	-6.7	10.2	4.4
#6	EEECW							
#7	EEEWE							
#8	EEEWC							
#243	WWWWW							

Step 3: observe reward and new situation

Reward: +10

Si	tuation	North	South	East	West	StayPut	PickUpCan	RandomMove
#1	EEEEE							
#2	EEEEC							
#3	EEEEW							
#4	EEECE							
#5	EEECC	2.9	-0.4	3.5	8.9	-6.7	10.2	4.4
#6	EEECW							
#7	EEEWE							
#8	EEEWC							
#243	WWWWW							

Step 4: find max Q-value for new situation

Reward: +10

Si	tuation	North	South	East	West	StayPut	PickUpCan	RandomMove
#1	EEEEE							
#2	EEEEC							
#3	EEEEW							
#4	EEECE	-7.0	25.5	-0.9	-2.3	11.3	3.6	-1.2
#5	EEECC	2.9	-0.4	3.5	8.9	-6.7	10.2	4.4
#6	EEECW							
#7	EEEWE							
#8	EEEWC							
	• • •							
#243	WWWWW							

Step 5: update Q-value for previous action

Reward: +10

Situation		North	South	East	West	StayPut	PickUpCan	RandomMove	
#1	EEEEE								
#2	EEEEC								
#3	EEEEW								
#4	EEECE	-7.0	25.5	-0.9	-2.3	11.3	3.6	-1.2	
#5	EEECC	2.9	-0.4	3.5	8.9	-6.7	30.4	4.4	
#6	EEECW	-							
#7	EEEWE	observed reward + discount factor \times MAX(Q-values for new situation)							
#8	EEEWC		10	+	0.8	× 25.	5 = 30).4	
	• • •								
#243	WWWWW								

... and repeat many, many times!

This Q update rule assumes that the reward function r and the state transition function δ are **deterministic**

$$\mathbf{Q}(s, a) \leftarrow r(s, a) + \gamma \max_{a'} \{ \mathbf{Q}(\delta(s, a), a') \}$$

What if the environment is **nondeterministic**?

This Q update rule assumes that the reward function r and the state transition function δ are **deterministic**

$$\mathbf{Q}(s, a) \leftarrow r(s, a) + \gamma \max_{a'} \{ \mathbf{Q}(\delta(s, a), a') \}$$

Instead of just replacing the current value of Q(s, a)by the new value $r(s, a) + \gamma \max_{a'} \{Q(\delta(s, a), a')\},\$ we will calculate a **weighted average** of the current Q value and the new value

Weighted average of X and Y = $(1 - \alpha) X + \alpha Y$

where $0 \le \alpha \le 1$

Examples: $\alpha = 0.3 \quad 0.7 \text{ X} + 0.3 \text{ Y}$

 $\alpha = 0.5$ 0.5 X + 0.5 Y = (X + Y)/2 $\alpha = 0$ X $\alpha = 1$ Y

$$Q(s, a) \leftarrow r(s, a) + \gamma \max_{a'} \{Q(\delta(s, a), a')\}$$

$$Q(s, a) \leftarrow r(s, a) + \gamma \max_{a'} \{Q(\delta(s, a), a')\}$$

$$Q(s, a) \leftarrow (1 - \alpha) Q(s, a) + \alpha [r(s, a) + \gamma \max_{a'} \{Q(\delta(s, a), a')\}]$$

$$Q(s, a) \leftarrow Q(s, a) - \alpha Q(s, a) + \alpha [r(s, a) + \gamma \max_{a'} \{Q(\delta(s, a), a')\}]$$

$$Q(s, a) \leftarrow Q(s, a) + \alpha [-Q(s, a) + r(s, a) + \gamma \max_{a'} \{Q(\delta(s, a), a')\}]$$

$$Q(s, a) \leftarrow Q(s, a) + \alpha [r(s, a) + \gamma \max_{a'} \{Q(\delta(s, a), a')\} - Q(s, a)]$$

$$+=$$

$$Q(s, a) + \alpha [r(s, a) + \gamma \max_{a'} \{Q(\delta(s, a), a')\} - Q(s, a)]$$

How to choose actions?

Naïve strategy: at each time step, choose the action a that **maximizes** the value of Q(s, a) for the current state s

This **exploits** the current Q-table knowledge, but doesn't **explore** the state-action space any further

This is dangerous, because the Q-table values could be way off (and they almost certainly will be at the start of training)

"Epsilon greedy" approach:

With **probability** ε , choose a random action

With **probability** $(1 - \varepsilon)$, choose the action that maximizes Q(s, a)

Good strategy: start with high ε and gradually decrease it over the run