
The XBC: a Modern Low-Cost Mobile Robot Controller∗

Richard LeGrand1, Kyle Machulis2, David P. Miller2,4, Randy Sargent3 & Anne Wright3
1Charmed Labs, 2KISS Institute for Practical Robotics, 3NASA Ames/QSS Group, Inc. & 4Univ. of Oklahoma

Abstract—Much of robotics research is carried out using
either PICs and processors that are a decade or more out
of date The alternative is custom built electronics that is
expensive and/or must be reinvented every time a new project
is begun. The XBC is a new design for a robot controller
merging a modern ARM processor with an FPGA that allows
high performance – especially in vision processing and motor
control – for a cost similar to controllers with a fraction of
its capabilities. Additionally, the XBC uses a new, and still
free, software development system, already in wide use. The
XBC is being mass produced (at least in research hardware
terms) so it is readily available and does not require computer
hardware or electronics skills in order to be obtained. This
paper describes the system, its capabilities and some potential
applications.

Index Terms—robot controller, back-emf, color tracking,
robot programming environment

I. THE XBC/IC SYSTEM

For the past half-century, Moore’s law has described how
general purpose computing has risen in capability while
the cost has declined. Along with those changes, advances
in operating systems, graphics and user interfaces have
lowered the technical barrier for entry to the point where
more households in the US have computers than do not
[2].
However, this has not been the trend for robotics in the

hobbyist and research market. As general purpose machines
have advanced, their ability to interface to the physical
world in a straightforward manner has often declined.
While the number of embedded processors has skyrocketed
in recent years [12], the equipment, software and required
knowledge for entry into using those processors has also
skyrocketed. The robot controllers powering most home-
brew robots ten years ago (the Basic STAMP [3] and the
Handy Board [7]) are still the controllers for many robots
today, and have been displaced in numbers only by the
RCX [9] – which while easy to use, has fewer practical
capabilities than the systems it displaces.
The XBC/IC system (see Figure 1) is an easy to use low-

cost general purpose robot controller. The system provides
powerful hardware (an FPGA linked to a commodity ARM
processor) combined with the easy to use and very popu-
lar Interactive C programming environment. The resulting
system has vision, control and interface capabilities that
far exceed previous robot controllers for this market. The
XBC uses Interactive C, the easy to use C programming
environment already used by tens of thousands of robotics

∗This work was supported in part by the KISS Institute for Practical
Robotics

researchers, students and hobbyists. Together, the XBC and
IC allow easy entry into advanced robotics applications.

Fig. 1. The XBC Robot Controller

II. THE XBC HARDWARE

The XBC’s unique hardware uses a Gameboy Advance
(GBA) as the main processor. We chose the GBA be-
cause of its powerful industry-standard ARM processor,
integrated TFT color display, low cost and widespread
availability.
The GBA also adds a certain “fun” element to an educa-

tional robotics platform. The XBC employs custom robot
hardware that plugs into the GBA where the game cartridge
is inserted. As expected, this hardware includes connectors,
H-bridges and flash memory. The most unique component
is an inexpensive but powerful FPGA from Xilinx. The
FPGA allows us to create customized peripheral controllers
that are specifically useful for robotics by using a palette
of logic gates.
The underlying technology for the XBC was first ex-

plored in the creation of the Xport [6]. The GBA is
an attractive computing platform for robotics, but it is
also a proprietary system with no programing or interface
documentation for supporting third party hardware. The
Xport primarily consists of an FPGA and flash memory.
The flash is used to store the GBA’s firmware program, and
the FPGA is used to implement custom logic peripherals

that are useful for many different applications including
robotics. The Xport essentially turns the GBA into a useful
embedded system with 4Mbytes of flash memory and 64
I/O signals.
The XBC extends the capabilities of the Xport by adding

the following features:
• Four closed-loop back-emf PID motor controllers
• Color vision system capable of recognizing three color
models simultaneously and finding connected compo-
nents, centroid, and moments for multiple targets per
color at frame-rate (50 frames/sec)

• 8 analog sensor inputs
• 16 digital sensor inputs
• 4 hobby servo ports
• Onboard battery charger and voltage monitor

A. Back-emf motor control

Existing controllers such as the RCX and Handy Board
offer open-loop motor control in the interest of reducing
cost. However, if a robot is expected to move accurately
within its environment and deal effectively with random
factors such as bumps or inclines, closed-loop motor con-
trol is immensely useful. Additionally, closed-loop control
is a classic robotics problem that provides useful context
for an educational platform.
For these reasons, we chose closed-loop motor control

for the XBC’s motors. However, closed-loop motor control
requires some form of motion feedback, which typically
results in extra mechanical complexity and cost (e.g. opto-
mechanical encoders). But there is another motion feedback
method that is often overlooked and doesn’t suffer from
these drawbacks.
Back-emf feedback is based on the principle that a

permanent magnet motor is also a generator producing a
voltage that is in direct proportion to its velocity. This
voltage, known as back-emf voltage, is observed by pe-
riodically removing power from the motor and measuring
the resulting voltage with an analog to digital converter [1].

Vback−emf = Kback−emf
dθmotor

dt
(1)

Where, Kback−emf is the back-emf constant of the motor,
θmotor is the motor shaft position, and Vback−emf is the
resulting voltage generated by the motor, known as the
back-emf voltage.
Thus, by measuring the back-emf voltage, the motor

velocity can be inferred. Additionally, integrating the back-
emf voltage measurements over time yields the motor
position.

θmotor =
1

Kback−emf

∫
Vback−emfmeas.dt (2)

Where, Vback−emfmeas. is the measured back-emf voltage.
Integrating the back-emf voltage over time can be easily

accomplished by a microprocessor, as we have done with
the XBC.
The XBC uses its FPGA to implement a custom four-

axis back-emf controller. This controller talks directly to

a serial 12-bit A/D converter, which converts back-emf
voltages into measurements. To achieve the best signal
to noise ratio, the controller takes dozens of back-emf
measurements per measurement period per axis and stores
them in buffer RAM. At the end of the period, the back-
emf measurements are presented to the ARM processor on
the GBA. The ARM then reads all of the measurements
and calculates the updated motor position for all four axes.
This process takes place 200 times per second. A PID

compensator and trajectory generator running on the ARM
provide smooth, accurate closed-loop position control at
practically no extra cost.

B. Color vision system

To give the robot the ability to detect and track objects in
its environment, a custom color vision system was designed
for the XBC. Color vision requires relatively modest com-
putational overhead. Additionally, the emergence of low-
cost color CMOS imagers with integrated A/D converters
has contributed to the affordability and practicality of these
systems.
The CMUCam [10] is an example of such a system. It

uses a dedicated 8-bit processor to process the camera’s
stream of pixels. Here, each pixel is passed through a non-
temporal filter to determine if the color is within the color
model or not. It does this by performing maximum and
minimum thresholds on all three components of YUV1

pixels. It then calculates a centroid of all pixels in the image
that fall within the model thresholds. The drawbacks of the
CMUCam are its overly simplified color models, which do
not handle lighting changes gracefully, and its inability to
identify multiple color blobs.
The Cognachrome [5] is a more capable color tracking

system. The video hardware on the Cognachrome allows
three separate color models to be tracked simultaneously.
It uses a Motorola 68332 microprocessor not to compute
the centroid of the relevant pixels, but to segment them
into connected components. The centroids and moments
are then calculated for each resulting blob. The major
drawbacks of the Cognachrome is its price (over two
thousand dollars), and its size (approximately four by two
by ten inches.
The XBC, uses lookup tables inside its FPGA to perform

color pixel filtering. One lookup table is used for each
of the three color models. The lookup table provides
more flexibility when describing the color models. This
flexibility allows the user to specify color models in an
HSV color space which is much more useful and intuitive
than using RGB or YUV. For example, it allows the user
to specify a narrow hue range while also specifying a
broad luminance range. As a result, the color models are
more robust with respect to lighting changes. The FPGA

1YUV is an alternate but similar color model to RGB, not to be
confused with HSV. It is a common misperception that YUV separates
a color into brightness (Y) and chroma information (UV), but in fact
YUV is simply a linear reprojection of the red, green and blue values.
Unfortunately this means all three values, Y, U and V will change in
direct proportion to a pixel’s brightness.

also stores a compressed representation of color model
membership within an image as run-length sequences.
These run-length sequences are retrieved and assembled
into blobs by employing a connected components algorithm
running on the ARM processor. This algorithm calculates
both the centroid of each blob, its mass (size) and moments
(major/minor axis and angle). Thus the XBC by leveraging
the FPGA with a very modest micro-processor is able to
surpass the performance of the Cognachrome at less than
a fifth of its price.

III. THE INTERACTIVE C PROGRAMMING
ENVIRONMENT

Interactive C (IC) is a version of the C programming
language made specifically for robotics controllers and
computer programming education. It contains all of the
basic concepts (arrays, variables, pointers, structures, etc.)
and control structures of C (including if/else blocks, for
loops and while loops). To reduce programming errors
commonly made by users new to the C language, IC
removes all pointer arithmetic and integrates run-time array
bounds checking into its execution system.
Interactive C was originally developed in 1991 to support

the MIT 6.270 robot contest [8]. In 1993, a simple GUI was
added to the system to aid in editing and downloading. In
1996 a commercial version of IC was released by Newton
Labs. In 2002 KIPR released a free version of IC complete
with IDE. Version 5 of IC by KIPR is designed to support
many processors, including the XBC. Its modular library
design allows support of new boards without changing the
core system.

Fig. 2. IC5 Target Processor Selection

The root of IC’s portability lies in the way it is compiled
and executed. Instead of being compiled directly to native
machine code, it is compiled to a set of instructions known
as pseudo-code (or p-code), which runs on a specialized
stack machine. The p-code is interpreted by firmware which
implements the stack machine specifically for the controller
it is running on. By having this extra layer of code between

IC and the controller boards, it is possible for the same IC
program to compile and run on many different controller
boards (see Figure 2) with little to no changes needed by
the user. Since the execution is handled on a layer above
the processor, features like bounds checking and graceful
error handling are available.
Multithreading is also integrated directly into the lan-

guage. Because the pseudo-code is fully stack-based, a
process’s state is defined solely by its stack and program
counter. Thus it is easy to task-switch simply by loading a
new stack pointer and program counter. This task-switching
is handled by the runtime module.
The multithreading and p-code interpreter allow IC to

be interactive. C statements or blocks may be entered
into the interface and will be evaluated immediately on
the processor. This allows function calls and simple loops
to be tested before being integrated into a program. This
is a tremendous boon to the novice and experienced
programmer alike, yielding almost instantaneous feedback
and allowing for quick tests of hardware hookups, motor
polarity, etc. Thanks to this feature, data can be stored on
the board and retrieved for analysis on computers using
spreadsheets or scientific software. Users can also test
portions of their downloaded programs without having to
write test stubs into their code.
As of version 5, IC now includes a pseudo-code simu-

lator. This is an implementation of the stack machine built
into the IC compiler that lets users run their code on the
same machine IC is running on. It reduces the need to
have a controller board present in order to test code (for
applications which do not require loops to be tightly closed
in the real world). The simulator can be configured to have
the same features as the controller board it is simulating
– including print types, numbers of analog/digital sensors,
and special features of each board (buttons, knobs and other
non-standard parts).

Fig. 3. The IC5 GUI with Edit Pane

Interactive C is distributed as both a command line
utility, and a full featured GUI. The GUI (see Figure 3)

is designed with the beginning programmer in mind by
providing syntax highlighting and coloring, inline function
descriptors, bracket/parenthetical checking, error highlight-
ing and help features. It is distributed for free by the KISS
Institute.
When combined with the LCD screen and control system

of the XBC, the Interactive C firmware provides a full
on-board control and status system to users. IC programs
can be stopped and started (and in the simulator, paused)
using the control system available on the board. A status
bar provides navigation and usage instructions as well as
status messages about the state of the firmware and the bot
itself. It updates multiple times per second with information
about sensors, motor position and speed (see Figure 4),
servo status and battery power. Icons on the screen alert
the user to the status of IC programs currently loaded,
whether a program is running on the bot, and the state
of any communications between the controller and the PC.

Fig. 4. The IC Interface on the XBC with Motor Status

The Interactive C print buffer has more capabilities
due to the screen size and video memory of the GBA.
Since users are no longer restricted to a 32 (or fewer)
character LCD typically found on robot controllers, they
can create full multi-page menu GUIs within the Interactive
C language, increasing the levels of control and depth their
programs can have.
The IC firmware on the XBC allows access and control

of the color tracking system. A GUI that runs directly on
the XBC displays live video, allows color selection from an
HSV palette (see Figure 5 and 6) and can display processed
video and/or sprites indicating blob positions and size.

IV. UNIQUE FEATURES OF THE XBC/IC

The XBC/IC system has several features that make it
unique among low-priced robot controllers.

A. FPGA for handling sensors, motor control and vision
pre-processing

Many robot designs employ multiple peripheral proces-
sors to distribute the typically large computational burden
across multiple processors. For example, dedicated proces-
sors are often used by robots to perform motor control

Fig. 5. The Color Selection Palette with Live Video

Fig. 6. The Color Selection Palette with Processed Video

and image processing. The disadvantage to this approach
is that multiple processors are expensive and consume
large amounts of power. Furthermore, a typical peripheral
processor often uses slow serial communication between it
and the main processor. This can create data latency, which
can adversely affect system performance.

The XBC is tightly coupled with each peripheral im-
plemented in the FPGA and the ARM processor (GBA).
This makes hardware/software codesign possible. Both the
back-emf controller and the color vision controller were de-
signed using hardware/software codesign techniques. The
main premise for this type of design is recognizing that
peripheral hardware can perform some tasks more quickly
and more inexpensively than processors (running software)
can.

By distributing time-critical tasks across hardware pe-
ripherals on the FPGA, approximately 150 million op-
erations per second (MIPS) required by the color vision
system and motor controller are offloaded from the GBA’s
main processor. The GBA’s processor is only capable of
approximately 10 MIPS. Thus, the XBC’s FPGA eliminates
the need to move to a faster CPU or multiple-processor
design. The resulting cost and power savings is significant.

B. Built in Camera

The built in camera provides video and color tracking
features in a compact form factor. An extension cable can
be used to reorient the camera as needed.

C. Game Boy as processor

It would simply be impossible to design and manufacture
a computing platform that provides similar functionality to
the GBA’s color LCD, ARM processor graphics hardware
and PCM sound at a similar price. Currently, the GBA
is available used through gaming retailers for only $29.
This has created a unique opportunity that we have taken
advantage of by integrating the GBA into the XBC.

D. Ease of Programming

The IC5 XBC firmware, extensive library of robot func-
tions and IC IDE make programming straightforward. No
intimate knowledge of the hardware is needed to access
sensors or motors.

V. SUMMARY & APPLICATION AREAS FOR THE
XBC/IC SYSTEM

The XBC was initially designed for the Botball Ed-
ucational Robotics Program [4], [11]. XBC stands for
Xport Botball Controller. The XBC is currently one of two
processors used in the Botball Program. As part of the
standardized Botball kit, the XBC is distributed to teachers
across the country and used by students to create origi-
nal robots to participate in regional and national Botball
tournaments. Educators, mentors and students participate
in regional hands-on workshops and learn to program the
XBC using IC. Because the XBC is so powerful and
versatile, teachers are encouraged to use this controller in a
myriad of other ways as part of classes and extracurricular
activities throughout the year. In spring of 2005, approx-
imately 2500 students distributed among 300 middle and
high schools will be working with the XBC; programming
it using Interactive C. Their initial task (as part of the
Botball program) is to make a small autonomous robot that
maneuvers through a series of obstacles to locate, acquire,
sort and place a number of colored objects distributed
across and above the game board.
While the Botball task is a game, the techniques used to

play it have many applications. Color tracking and vision-
based manipulation are a staple of many industrial and
assembly processes. Servo control of motors for positioning
is used in robot systems from Roomba to the MER rovers.
The XBC is already finding its way into university research
labs as a quick and cost effective way to prototype capable
robot systems.
The XBC’s powerful combination of features is un-

matched by any other integrated robot controller available
today at any price. It is a board that brings together many of
the features currently available to researchers only through
custom PC-104 boards or similar ad-hoc systems. Vision
systems and accurate motor control systems have been
developed in academic labs or in large industrial centers for
years, but never made it into the mass market, available as a

tool for both research and education. With the combination
of XBC and Interactive C, academic institutions and home
users can experiment and learn with a platform that can also
be used in professional and scientific grade applications.
With students still in middle school being able to harness
the power of the robot throughout their education, their
abilities once they reach college level will be higher than
ever before. The XBC takes advantage of existing con-
sumer and commodity hardware to create a cost effective
robotics solution that inspires as well as motivates learning.
The XBC is an innovation to spark innovation.

REFERENCES

[1] Electro Craft Corp. DC Motors, Speed Controls, Servo Systems:
an Engineering Handbook. Electro-Craft Corp, 5th edition edition,
1980.

[2] Martin Crutsinger. Computers in half of u.s. homes. Washington
Post, page E17, October 17 2000.

[3] Parallax Inc. Basic stamps. http://www.parallax.com/
html_pages/products/basicstamps/basic_stamps.
as%p, 2005.

[4] KIPR. Botball robotics education. http://www.botball.org,
2005.

[5] Newton Research Labs. Cognachrome vision system. http://
www.newtonlabs.com/cognachrome/index.html, 2001.

[6] Richard LeGrand. Xport 2.0 user guide. Technical report, Charmed
Labs, 2003.

[7] F. Martin. The handy board. http://www.handyboard.com/
techdocs/, 2002.

[8] 6.270 Organizers. 6.270 - mit’s autonomous robot design competi-
tion. http://web.mit.edu/6.270/, 2005.

[9] Kekoa Proudfoot. Reverse engineering the lego rcx. http://
graphics.stanford.edu/˜kekoa/rcx/talk/, 1998.

[10] Anthony Rowe, Chuck Rosenberg, and Illah Nourbakhsh. A low
cost embedded color vision system. In Proceedings of IROS 2002.
IEEE Press, 2002.

[11] C. Stein. Botball: Autonomous students engineering autonomous
robots. Computers in Education Journal, (2), June 2003.

[12] F. Vahid and T. Givargis. Embedded System Design A Unified
Hardware/Software Introduction. John Wiley & Sons, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

