
Science of Computer Programming 37 (2000) 113–138
www.elsevier.nl/locate/scico

A semantic approach to secure information ow

Rajeev Joshi a;∗, K. Rustan M. Leino b
a Department of Computer Sciences, The University of Texas, Austin, TX 78712, USA
b Compaq Systems Research Center, 130 Lytton Ave, Palo Alto, CA 94301, USA

Abstract

A classic problem in security is that of checking that a program has secure information ow.
Informally, this problem is described as follows: Given a program with variables partitioned into
two disjoint sets of “high-security” and “low-security” variables, check whether observations
of the low-security variables reveal any information about the initial values of the high-security
variables. Although the problem has been studied for serveral decades, most previous approaches
have been syntactic in nature, often using type systems and compiler data ow analysis techniques
to analyze program texts. This paper presents a considerably di�erent approach to check secure
information ow, based on a semantic characterization. A semantic approach has several desirable
features. Firstly, it gives a more precise characterization of security than that provided by most
previous approaches. Secondly, it applies to any programming constructs whose semantics are
de�nable; for instance, the introduction of nondeterminism and exceptions poses no additional
problems. Thirdly, it can be used for reasoning about indirect leaking of information through
variations in program behavior (e.g., whether or not the program terminates). Finally, it can
be extended to the case where the high- and low-security variables are de�ned abstractly, as
functions of actual program variables. The paper illustrates the use of the characterization with
several examples and discusses how it can be applied in practice. c© 2000 Elsevier Science B.V.
All rights reserved.

0. Introduction

A classic problem in security is that of determining whether a given program has
secure information ow [3,4]. In its simplest form, this problem may be described
informally as follows: Given a program whose variables are partitioned into two disjoint
sets of “high-security” and “low-security” variables, check whether observations of
the low-security variables reveal anything about the initial values of the high-security
variables. A related problem is that of detecting covert ows, where information is
leaked indirectly, through variations in program behavior [12]. For instance, it may be
possible to deduce something about the initial values of the high-security variables by

∗ Corresponding author.
E-mail addresses: joshi@cs.utexas.edu (R. Joshi), rustan@pa.dec.com (K.R.M. Leino).

0167-6423/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0167 -6423(99)00024 -6

114 R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138

examining the resource usage of the program (e.g., by counting the number of times
it accesses the disk head).
Although this problem has been studied for several decades, most of the previous

approaches have been syntactic in nature, often using type systems and compiler data
ow analysis techniques to analyze program texts. In this paper, we present a con-
siderably di�erent approach to secure information ow, based on a semantic notion
of program equality. A de�nition based on program semantics has several desirable
features. Firstly, it provides a more precise characterization of secure information ow
than that provided by most previous approaches. Secondly, it is applicable to any pro-
gramming construct whose semantics are de�ned; for instance, nondeterminism and
exceptions pose no additional problems. Thirdly, it can be used for reasoning about
indirect leaking of information through variations in program behavior (e.g., whether or
not the program terminates). Finally, it can be extended to the case where the high- and
low-security variables are de�ned abstractly, as functions of actual program variables.
The outline of the rest of the paper is as follows. We start in Section 1 by infor-

mally describing the problem and discussing several small examples. We present our
formal characterization of security in Section 2. In Section 3, we describe the nota-
tional conventions we use and also provide a short overview of relational and weakest
precondition semantics of sequential programs. In Section 4, we formulate our security
condition in relational terms and show that it corresponds to the notion used else-
where in the literature. In Sections 5 and 6 we show how to express our condition
in the weakest precondition calculus, which is somewhat more convenient to use in
veri�cation. In Section 7, we discuss the main obstacles to applying our approach in
practice and propose a stronger condition that is easier to check. This is followed by
the discussion in Section 8 of how our techniques may be used even when the high-
and low-security variables are de�ned abstractly. We discuss related work in Section
9 and end with a short summary in Section 10.

1. Informal description of the problem

Consider a program whose variables are partitioned into two disjoint tuples h (de-
noting “high-security” variables) and k (denoting “low-security” variables). Informally
speaking, we say that such a program is secure if:

Observations of the initial and �nal values of k do not provide any information about
the initial value of h.

(Notice that it is only the initial value of h that we care about.) We illustrate this
informal description of the problem with a few examples. Throughout our discussion,
we refer to an “adversary” who is trying to glean some information about the initial
value of h. We assume that this adversary has knowledge of the program text and of
the initial and �nal values of k.

R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138 115

The program

k := h

is not secure, since the initial value of h can be observed as the �nal value of k.
However, the program

h := k

is secure, since k, whose value is not changed, is independent of the initial value of h.
Similarly, the program

k := 6

is secure, because the �nal value of k is always 6, regardless of the initial value of h.
It is possible for an insecure program to occur as a subprogram of a secure program.

For example, in each of the four programs

k := h ; k := 6 (0)

h := k ; k := h (1)

k := h ; k := k − h (2)

if false then k := h end (3)

the insecure program k := h occurs as a subprogram; nevertheless, the four programs
are all secure.
There are more subtle ways in which a program can be insecure. For example, with

h; k of type boolean, the program

if h then k := true else k := false end

is insecure, despite the fact that each branch of the conditional is secure. This program
has the same e�ect as k := h, and the ow of information from h to k is called
implicit [4].
In the insecure programs shown so far, the exact value of h is leaked into k. This

need not always be the case: a program is considered insecure if it reveals any infor-
mation about the initial value of h. For example, if h and k are of type integer, neither
of the two programs shown below,

k := h ∗ h
if 06h then k := 1 else k := 0 end ;

transmits the entire value of h, but both programs are insecure because the �nal value
of k does reveal something about the initial value of h.
A nondeterministic program can be insecure even if the adversary has no knowledge

of how the nondeterminism is resolved. For example, the following program is insecure,
because the �nal value of k is always very close to the initial value of h:

k := h− 1 L k := h+ 1

116 R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138

(The operator L denotes demonic choice: execution of S L T consists of choosing any
one of S or T and executing it.) The program

skip L k := h

is also insecure, because if the initial and �nal values of k are observed to be di�erent,
then the initial value of h is revealed.
Finally, we give some examples of programs that transmit information about h

via their termination behavior. The nicest way to present these examples is by using
Dijkstra’s if � construct [6]. The operational interpretation of the program

if B0→ S0 L B1→ S1 �

is as follows. From states in which neither B0 nor B1 is true, the program loops
forever; from all other states it executes either S0 (if B0 is true) or S1 (if B1 is true).
If both B0 and B1 are true, the choice between S0 and S1 is made arbitrarily. Now,
the deterministic program

if h = 0→ loop L h 6= 0→ skip � (4)

(where loop is the program that never terminates) is insecure, because whether or not
the program terminates depends on the initial value of h. Next, consider the following
two nondeterministic programs:

if h = 0→ skip L true→ loop � (5)

if h = 0→ loop L true→ skip � (6)

Note that program (5) terminates only if the initial value of h is 0. Although there is
always a possibility that the program will loop forever, if the program is observed to
terminate, the initial value of h is revealed; thus the program is considered insecure.
Program (6) is more interesting. If we take the view that nontermination is indistin-
guishable from slow execution, then the program is secure. However, if we take the
view that an adversary is able to detect in�nite looping, then it can deduce that the
initial value of h is 0, and the program should be considered insecure.

Remark. Readers may be wondering just how much time an adversary would have to
spend in order to “detect in�nite looping”, so the second viewpoint above requires a
little explanation. One way to address the issue of nontermination is to require that
machine-speci�c timing information (which an adversary may exploit to detect nonter-
mination) be made explicit in the programming model (e.g., by adding a low-security
timer variable, which is updated by each instruction). Another way, which we adopt in
this paper, is to strengthen the de�nition of security by considering powerful adversaries
that can detect nontermination. As we will see later (Section 6.0) nontermination is an
issue only in the presence of nondeterminism. Even then, our de�nition is at worst a
little conservative, in that it classi�es a program such as (6) as insecure.

R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138 117

We hope that these examples, based on our informal description of secure information
ow, have helped give the reader an operational understanding of the problem. From
now on, we will adopt a more rigorous approach. We start in the next section by
formally de�ning security in terms of program semantics.

2. Formal characterization

Our formal characterization of secure information ow is expressed as an equality
between two programs. We use the symbol := to denote program equality based on
total correctness and write “S is secure” to mean that program S has secure information
ow. (For now, we do not assign a concrete meaning to := ; that will be done in later
sections.)
A key ingredient in our characterization is the program

“assign to h an arbitrary value”

which we denote by HH (“havoc on h”). Program HH may be used to express some
useful properties. Firstly, observe that the di�erence between a program S and the
program “HH ; S” is that the latter executes S after setting h to an arbitrary value.
Secondly, observe that the program “S ; HH” ‘discards’ the �nal value of h result-
ing from the execution of S. We use these observations below in giving an informal
understanding of the following de�nition of security.

De�nition (Secure information ow).

S is secure ≡ (HH ; S ; HH := S ; HH) (7)

Using the two observations above, this characterization may be understood as fol-
lows: The occurrence of “;HH” on each side indicates that only the �nal values of
k are of interest whereas the occurrence of “HH ;” on the left side indicates that the
program starts with an arbitrary assignment to h. Thus, the two programs are equal
provided that the �nal value of k produced by S does not depend on the initial value of
h. In Section 4, we provide a more rigorous justi�cation for this de�nition, by relating
it to a notion of secure information ow that has been used elsewhere in the literature,
but for now, we hope that this informal argument gives the reader some operational
understanding of our de�nition. In the rest of this section, we discuss some of the
features of our approach.
Firstly, note that we have not stated the de�nition in terms of a particular style of

program semantics (e.g., axiomatic, denotational, or operational). Sequential program
equality can be expressed in any of these styles and di�erent choices are suitable for
di�erent purposes. For instance, in this paper, we will use a relational semantics to
justify our characterization, but we will use weakest precondition semantics to obtain
a formulation that is more convenient to use in veri�cation. Secondly, observe that our

118 R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138

de�nition is given purely in terms of program semantics; thus it can be used to reason
about any programming construct whose semantics are de�ned. For instance, it can
be used for programs with nondeterminism and exceptions, as well as complex data
structures such as arrays, records, or objects. (In contrast, syntactic de�nitions such as
those based on type systems, typically need to be extended with the introduction of
new programming constructs.) Finally, note that our de�nition leaves open the decision
of how h and k are de�ned. Like some other approaches, one can reason about di�erent
kinds of covert ows by introducing appropriate special variables and including them
in the low-security variables k. (For instance, one can deal with covert ows involving
timing considerations by including in k a program variable that records execution time,
c.f. [10].) Unlike other approaches, however, our de�nition does not require that h and
k be actual variables in the program. As we describe in Section 8, our approach
may be used even when h; k are de�ned abstractly, as functions of actual program
variables.

3. Notation and semantics primer

In later sections of this paper, we study our security condition using relational pro-
gram semantics, weakest precondition semantics and Hoare logic. This section explains
the notation we use, provides a short introduction to these semantics, and lists properties
relating them.
Much of our notation follows Dijkstra and Scholten’s book [8]. We use an in�x,

left-associative dot to denote function application. For Q denoting either ∀ or ∃, we
write

(Q j : r :j : t : j)

to denote the quanti�cation over all j satisfying r :j. Identi�er j is called the dummy,
r:j is called the range, and t:j is called the term of the quanti�cation. When the range
is true or is understood from context, it is often omitted. We use similar notation to
de�ne sets, and write

{ j : r :j : t : j }
to mean the set of all elements of the form t:j for j satisfying r:j.

3.0. Relational semantics

In relational semantics, a program is viewed as a relation over the extended state
space obtained by adding the special “looping state” ∞ to the space formed by taking
the cartesian product of the domains of the program variables. Program equality := in
this semantics is relational equality = . We use the following notational conventions:
Identi�ers w; x; y; z denote program states (including ∞). For any program variable v,
we write v:x to denote the value of v in state x. (We use the convention that v:∞ is a

R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138 119

special value ⊥ that lies outside the domain of v.) For any relation S and states x and
y, we write x〈S〉y to denote that S relates x to y; this means that there is an execution
of program S from (initial) state x to (�nal) state y. We assume that every program
S satis�es

(∀ x :: ∞〈S〉x ≡ x =∞) (8)

which states that there is no exit from the looping state (c.f. [7]).
The identity relation is denoted by “Id” ; it satis�es x〈Id〉y ≡ x = y for all x; y.

The universal relation is denoted by “true” ; it satis�es x〈true〉y for all x; y. The
symbols ⊂; ; ;¬;∪ denote relational containment, composition, complement, and union,
respectively. We will use the facts that Id is a left- and a right-identity of composition
and that ; distributes over ∪ and is therefore monotonic with respect to ⊆ .
A program S is called miraculous if for some initial state x there is no �nal state y

such that x〈S〉y. A non-miraculous program therefore corresponds to a relation that is
left-total, that is, a relation that satis�es

true ⊆ S ; true:

The relational semantics of the program HH are given as follows:

(∀ x; y :: x〈HH 〉y ≡ k :x = k :y)

Note that the relation HH is both reexive and transitive:

Id ⊆ HH (9)

HH ; HH ⊆ HH (10)

3.1. Weakest precondition semantics and Hoare triples

In the weakest precondition semantics [6,8]. a program S is characterized by two
predicate transformers wlp :S (“weakest liberal precondition”) and wp :S (“weakest pre-
condition”) which are informally de�ned as follows: For any predicate p,

• wlp:S:p holds in exactly those initial states from which every terminating computation
of S ends in a state satisfying p, and

• wp:S:p holds in exactly those initial states from which every computation of S
terminates in a state satisfying p.

In relational terms, the predicate transformers wlp:S and wp:S satisfy the following
conditions: For any program S and any predicate p

(∀ x :: (wlp:S:p):x ≡ (∀y : x〈S〉y : y =∞ ∨ p:y)) (11)

(∀ x :: (wp:S:p):x ≡ (∀y : x〈S〉y : y 6=∞ ∧ p:y)) (12)

These two transformers are related by the following pairing property: for any S

(∀p :: wp:S:p = wlp:S:p ∧ wp:S:true) (13)

120 R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138

For any program with a variable v, we de�ne the unary predicate transformer [v :]
(read “v-everywhere”) as

[v : p] = (∀M :: wlp:“v := M”:p)

where M ranges over the domain of v (not including ⊥). This unary predicate trans-
former has all the properties of universal quanti�cation; in particular, it is universally
conjunctive. When v denotes the set of all variables of the program, we will abbreviate
[v :] by [] (read “everywhere”).
In weakest precondition semantics, program equality := is equality of wlp and wp :

S := T ≡ (∀p :: [wlp:S:p ≡ wlp:T:p] ∧ [wp:S:p ≡ wp:T:p])
which, on account of the pairing property (13), can be simpli�ed to

S := T ≡ (∀p :: [wlp:S:p ≡ wlp:T:p]) ∧ [wp:S:true ≡ wp:T:true]
The wlp and wp semantics of the program HH are

(∀p :: [wlp:HH:p ≡ [h : p]])
[wp:HH:true ≡ true]

Informally speaking, the total-correctness Hoare triple {p } S { q } states that, when
started in any state satisfying predicate p, program S is guaranteed to terminate in a
state satisfying predicate q. Formally, this triple is de�ned in terms of wp as follows.
For any program S and predicates p and q

{p } S { q } ≡ [p ⇒ wp:S:q]: (14)

4. Security in the relational calculus

In this section, we formally justify de�nition (7) by showing that it is equivalent to
the notion used elsewhere in the literature. Since that notion was given in operational
terms, we �nd it convenient to use relational semantics.
In the relational semantics, condition (7) is expressed as follows:

S is secure
= { De�nition (7), program equality := is relational equality = }

HH ; S ; HH = S ; HH
⇒ { (9) and ; monotonic, hence HH ; S ; Id ⊆ HH ; S ; HH }

HH ; S ⊆ S ; HH
⇒ { Applying “ ; HH” to both sides, using ; monotonic }

HH ; S ; HH ⊆ S ; HH ; HH
⇒ { (10) and ; monotonic, hence S ; HH ; HH ⊆ S ; HH }

HH ; S ; HH ⊆ S ; HH
⇒ { (9) and ; monotonic, hence Id ; S ; HH ⊆ HH ; S ; HH }

HH ; S ; HH = S ; HH

R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138 121

Since the second expression equals the �nal one, we have equivalence throughout, and
we have

S is secure ≡ (HH ; S ⊆ S ; HH) (15)

This result is useful because it facilitates the following derivation, which expresses
security in terms of the values of program variables.

HH ; S ⊆ S ; HH
= { de�nition of relational containment }

(∀ x; y :: x〈HH ; S〉y ⇒ x〈S ; HH 〉y)
= { de�nition of relational composition, twice }

(∀ x; y :: (∃w :: x〈HH 〉w ∧ w〈S〉y)
⇒ (∃ z :: x〈S〉z ∧ z〈HH 〉y))

= { relational semantics of HH , trading twice }
(∀ x; y :: (∃w : k:x = k:w : w〈S〉y)

⇒ (∃ z : x〈S〉z : k:z = k:y))
= { predicate calculus }

(∀ x; y :: (∀w : k:x = k:w :
w〈S〉y ⇒ (∃ z : x〈S〉z : k:z = k:y)))

= { unnesting quanti�ers }
(∀w; x; y : k:x = k:w :

w〈S〉y ⇒ (∃ z : x〈S〉z : k:z = k:y)) (∗)
= { nesting }

(∀w; x : k:x = k:w : (∀y :: w〈S〉y
⇒ (∃ z : x〈S〉z : k:z = k:y)))

= { Set calculus }
(∀w; x : k:x = k:w : {y : w〈S〉y : k:y } ⊆ { z : x〈S〉z : k:z })

= { Expression is symmetric in w and x }
(∀w; x : k:x = k:w : {y : w〈S〉y : k:y } = { z : x〈S〉z : k:z })

Thus, we have established that, for any S,

S is secure ≡ (∀w; x : k:w = k:x : {y : w〈S〉y : k:y }
= { z : x〈S〉z : k:z }) (16)

This condition says that the set of possible �nal values of k is independent of the initial
value of h. It has appeared in the literature [2] as the de�nition of secure information
ow. (Similar de�nitions, restricted to the deterministic case, have appeared elsewhere
[19,20].) Thus, one may view the derivation above as a proof of the equivalence of
(7) with respect to the notion used by others.
Note that we have also shown (see formula (∗) in the calculation above)
S is secure ≡ (∀w; x; y : k:w = k:x ∧ w〈S〉y :

(∃ z : x〈S〉z : k:z = k:y)) (17)

This formulation of security will be useful in Section 6.

122 R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138

5. Security in the weakest precondition calculus

In this section and the next, we show how our de�nition of secure information ow
may be expressed in the weakest precondition calculus [6]. Our �rst formulation, pre-
sented in this section, involves a quanti�cation over predicates; it is therefore somewhat
inconvenient to use. In the next section, we show how this formulation can be written
more simply as a condition involving a quanti�cation over the domain of k.
In the weakest precondition semantics, the security condition (7) may be expressed

as follows:

HH ; S ; HH := S ; HH
= { Program equality in terms of wlp and wp }

(∀p :: [wlp:(HH ; S ; HH):p ≡ wlp:(S ; HH):p])
∧ [wp:(HH ; S ; HH):true ≡ wp:(S ; HH):true]

= { wlp and wp of HH and ; }
(18)(∀p :: [[h : wlp:S: [h : p]] ≡ wlp:S: [h : p]])
(19)∧ [[h : wp:S:true] ≡ wp:S:true]

The last formula above contains expressions in which a predicate q satis�es

[[h : q] ≡ q]:
Predicates with this property occur often in our calculations, so it is convenient to
introduce a special notation for them and identify some of their properties. This is the
topic of the following subsection.

5.0. Cylinders

Informally speaking, a predicate q that satis�es [q ≡ [h : q]] has the property that
its value is independent of the variable h. We refer to such predicates as “h-cylinders”,
or simply as “cylinders” as h is understood from context. For notational convenience,
we de�ne the set Cyl of all h-cylinders:

De�nition (Cylinders). For any predicate q,

q ∈ Cyl ≡ [q ≡ [h : q]] (20)

The following lemma provides several equivalent ways of expressing that a predicate
is a cylinder.

Lemma 0. For any predicate q; the following are all equivalent to q ∈ Cyl.
(i) [q ≡ [h : q]].
(ii) (∃p :: [q ≡ [h : p]]).
(iii) ¬q ∈ Cyl.

Proof. Follows from predicate calculus.

R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138 123

We will also use the following result, whose proof follows from predicate calculus:
For any predicate q

q ∈ Cyl ⇒ (∀w; x : k:w = k:x : q:w ⇒ q:x) (21)

5.1. Security in terms of cylinders

We now use the results in the preceding subsection to simplify the formulation of
security in the weakest precondition calculus. We begin by rewriting (18) as follows.

(∀p :: [[h : wlp:S: [h : p]] ≡ wlp:S: [h : p]])
= { De�nition of Cyl (20) }

(∀p :: wlp:S: [h : p] ∈ Cyl)
= { One-point rule }

(∀p; q : [q ≡ [h : p]] : wlp:S:q ∈ Cyl)
= { Nesting and trading }

(∀ q :: (∀p :: [q ≡ [h : p]] ⇒ wlp:S:q ∈ Cyl))
= { Predicate calculus }

(∀ q :: (∃p :: [q ≡ [h : p]]) ⇒ wlp:S:q ∈ Cyl)
= { Lemma 0(ii), and trading }

(∀ q : q ∈ Cyl : wlp:S:q ∈ Cyl)
Similarly, we rewrite the expression (19) as follows.

[[h : wp:S:true] ≡ wp:S:true]
= { De�nition of Cyl (20) }

wp:S:true ∈ Cyl
Putting it all together, we get the following condition for security: For any program S,

S is secure ≡ (∀p : p ∈ Cyl : wlp:S:p ∈ Cyl) ∧ wp:S:true ∈ Cyl (22)

6. A simpler characterization

Using (22) to check whether a given program S is secure requires evaluation of the
following term:

(∀p : p ∈ Cyl : wlp:S:p ∈ Cyl) (23)

Since this formula involves a quanti�cation over all cylinders, it is inconvenient to use.
In this section, we show how this quanti�cation over predicates p can be reduced to a
simpler quanti�cation over the domain of k. In particular, we show that it su�ces to
consider only cylinders that are of the form “k 6= M”, for M ranging over the domain
of k.

124 R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138

First, we restrict the quanti�cation in formula (23) as described above and rewrite
the resulting expression in relational terms:

(∀M :: wlp:S:(k 6= M) ∈ Cyl)
⇒ { relational property of cylinders (21) }

(∀M :: (∀w; x : k:w = k:x : (wlp:S:(k 6= M)):w
⇒(wlp:S:(k 6= M)): x))

= { unnesting and relational de�nition of wlp (11) }
(∀M;w; x : k:w = k:x : (∀y : w〈S〉y : y =∞ ∨ k:y 6= M)

⇒ (∀ z : x〈S〉z : z =∞ ∨ k:z 6= M))
= { unnesting and contrapositive }

(∀M;w; x; z : k:w = k:x ∧ x〈S〉z :
z 6=∞ ∧ k:z = M ⇒ (∃y : w〈S〉y : y 6=∞ ∧ k:y = M))

⇒ { one-point rule and weakening (by dropping y 6=∞) }
(∀w; x; z : k:w = k:x ∧ x〈S〉z :

z 6=∞ ⇒ (∃y : w〈S〉y : k:y = k:z))
Next, we rewrite the condition wp:S:true ∈ Cyl :

wp:S:true ∈ Cyl
⇒ { relational property of cylinders (21) }

(∀w; x : k:w = k:x : (wp:S:true):w ⇒ (wp:S:true): x)
= { relational property of wp (12) }

(∀w; x : k:w = k:x : (∀y : w〈S〉y : y 6=∞)
⇒(∀ z : x〈S〉z : z 6=∞))

= { unnesting and contrapositive }
(∀w; x; z : k:w = k:x ∧ x〈S〉z :

z =∞ ⇒ (∃y : w〈S〉y : y =∞))
⇒ { using z =∞ ∧ y =∞ ⇒ k:y = k:z }

(∀w; x; z : k:w = k:x ∧ x〈S〉z :
z =∞ ⇒ (∃y : w〈S〉y : k:y = k:z))

Thus, we have

S is secure
= { Condition (22) }

(∀p : p ∈ Cyl : wlp:S:p ∈ Cyl) ∧ wp:S:true ∈ Cyl
⇒ { instantiate with cylinders of the form “k 6= M” }

(∀M :: wlp:S:(k 6= M) ∈ Cyl) ∧ wp:S:true ∈ Cyl
⇒ { the two calculations above }

(∀w; x; z : k:w = k:x ∧ x〈S〉z :
(z 6=∞ ⇒ (∃y : w〈S〉y : k:y = k:z))

∧ (z =∞ ⇒ (∃y : w〈S〉y : k:y = k:z)))
= { pred calc }

(∀w; x; z : k:w = k:x ∧ x〈S〉z : (∃y : w〈S〉y : k:y = k:z))
= { Condition (17) }

S is secure

R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138 125

Since the �rst and last lines are equivalent, we have equivalence throughout, and thus
we have proved the following theorem.

Theorem 1. For any program S

S is secure ≡ (∀M :: wlp:S:(k 6= M) ∈ Cyl) ∧ wp:S:true ∈ Cyl (24)

Note that this is simpler than (22) since the quanti�cation ranges over the domain
of k.

6.0. Deterministic programs

In the case that S is also known to be deterministic and nonmiraculous, we can
further simplify the security condition (24). A deterministic, nonmiraculous program S
satis�es the following property [8]:

(∀p :: [wp:S:p ≡ ¬wlp:S:(¬p)]) (25)

Consequently, the term involving wp in (24) is subsumed by the term involving wlp:

wp:S:true ∈ Cyl
= { (25), with p := true }

¬wlp:S:false ∈ Cyl
= { Lemma 0(iii) }

wlp:S:false ∈ Cyl
Since it can also be shown that wlp:S:false ∈ Cyl follows from (∀M :: wlp:S:(k 6=
M) ∈ Cyl) (cf. [16]), the security condition for deterministic S is given by

S is secure ≡ (∀M :: wlp:S:(k 6= M) ∈ Cyl) (26)

Next, we show that condition (26) may also be expressed in terms of wp alone:

(∀M :: wlp:S:(k 6= M) ∈ Cyl)
= { Lemma 0(iii) p ∈ Cyl ≡ ¬ p ∈ Cyl }

(∀M :: ¬ wlp:S:(k 6= M) ∈ Cyl)
= { Condition (25) above }

(∀M :: wp:S:(k = M) ∈ Cyl)
Thus we have another way of expressing the condition for security of deterministic
programs, namely,

S is secure ≡ (∀M :: wp:S:(k = M) ∈ Cyl) (27)

6.1. Examples

We now illustrate our formulae with some examples.

126 R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138

First, we apply the security condition to program (5), which is insecure because of
its termination behavior. Letting N range over the domain of h, we have

(if h = 0 −→ skip L true −→ loop �) is secure
= { Security condition (24) }

(∀M :: wlp:(if h = 0 −→ skip L true −→ loop �):(k 6= M) ∈ Cyl)
∧ wp:(if h = 0 −→ skip L true −→ loop �):true ∈ Cyl

= { wlp and wp, using (∀p :: [wlp:loop:p ≡ true])
and [wp:loop:true ≡ false] }

(∀M :: ((h = 0 ⇒ k 6= M) ∧ (true ⇒ true)) ∈ Cyl)
∧ ((h = 0 ∨ true) ∧ (h = 0 ⇒ true) ∧ (true ⇒ false)) ∈ Cyl

= { pred calc }
(∀M :: (h = 0 ⇒ k 6= M) ∈ Cyl) ∧ false ∈ Cyl

= { Lemma 0(i), and false ∈ Cyl }
(∀M :: [h = 0 ⇒ k 6= M ≡ [h : h = 0 ⇒ k 6= M]])

⇒ { instantiate with M := 2 }
[h = 0 ⇒ k 6= 2 ≡ [h : h = 0 ⇒ k 6= 2]]

= { [p] is shorthand for [h; k : p] }
[h; k : h = 0 ⇒ k 6= 2 ≡ [h : h = 0 ⇒ k 6= 2]]

= { de�nition of [v :] , twice; wlp of := }
(∀M;N :: wlp:(k; h := M;N) : (h = 0 ⇒ k 6= 2

≡ [h : h = 0 ⇒ k 6= 2]))
⇒ { instantiate with M;N := 2; 2 }

2 = 0 ⇒ 2 6= 2 ≡ [h : h = 0 ⇒ 2 6= 2]
= { pred calc, identity of ≡ }

[h : h 6= 0]
= { de�nition of [h :] }

(∀N :: wlp:(h := N):(h 6= 0))
⇒ { instantiate with N := 0 }

0 6= 0
= { pred calc }

false

Next, using program (4), we illustrate how one can reason about secure termination
behavior of deterministic programs using wlp.

(if h = 0 −→ loop L h 6= 0 −→ skip �) is secure
= { Security condition for deterministic programs (26) }

(∀M :: wlp:(if h = 0 −→ loop L h 6= 0 −→ skip �):(k 6= M) ∈ Cyl)
= { wlp of if }

(∀M :: ((h = 0 ⇒ true) ∧ (h 6= 0 ⇒ k 6= M)) ∈ Cyl)
= { De�nition of Cyl : note h 6= 0 ⇒ k 6= M depends on h }

false

R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138 127

7. Practical considerations

Despite the simple mathematical nature of our characterization of secure information
ow, there is one serious obstacle to using it in practice: the property p ∈ Cyl is neither
monotonic nor antimonotonic in p with respect to the ordering ⇒. Consequently,
security is not preserved by re�nement. (As an illustration of this, note that the secure
program “assign to k an arbitrary value” is re�ned by the insecure program “k :=
h”.)
This leads to two di�culties. The �rst is that, since sequential programs are typically

implemented by re�ning their nondeterminism, there is the possibility that a (nonde-
terministic) secure program received from an adversary is rendered insecure when it
is implemented deterministically. There are at least two ways to address this �rst dif-
�culty. The �rst is to recognize that re�nements are a concern only if the adversary is
aware of how they are made. If we take the position that the adversary has absolutely
no knowledge of how a program is re�ned in the process of its implementation (or
how nondeterministic choices are resolved during execution), we can assert that its ob-
servations reveal no information about the initial value of h and so the implementation
is secure. The second way to address this �rst di�culty is by noting that the problem
does not arise for deterministic programs, since the latter are maximal in the re�ne-
ment ordering. Thus the di�culty is avoided by requiring that programs received from
an adversary be deterministic. This latter approach is similar to the one advocated by
Roscoe [15], who gives several characterizations (corresponding to di�erent observa-
tional models) for the secure information ow property for CSP processes. He makes a
persuasive argument for requiring determinism by showing that these characterizations
are all equivalent for deterministic processes.
The second di�culty is that in order to check whether wlp:S:p is a cylinder, one

has to compute the exact expression for wlp:S for a given program S. For straight-
line programs, this is straightforward, but for programs with iteration or recursion,
determining the exact expression for wlp requires complex �xpoint computations, which
makes this checking unattractive in practice.
One way to address this second di�culty would be to require that each program

somehow be annotated with a proof of its security. Verifying security would then
reduce to the task of checking whether the annotations were correct, a task that can be
substantially simpler than proof construction. (This idea has recently been popularized
by Necula and Lee, who call it proof-carrying code [14].)
In the rest of this section, we describe a restriction under which security can be

checked without exact wlp computation. As we will see, our restriction allows us
to check security by checking Hoare triples; thus it can be used to verify programs
annotated with Hoare-style assertions. (Note that, since Hoare triples are closed under
re�nement, it follows that not only is any program satisfying our restriction secure, but
so are all its re�nements.)

128 R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138

We start by introducing two de�nitions. A program S is said to be functional with
respect to variable k if the initial value of k determines its �nal value:

(∀w; x; y; z : k :w = k :x ∧ w〈S〉y ∧ x〈S〉z : k :y = k :z)

A program S is a function with respect to variable k if it is also total in its domain:

S is a function w.r.t. k ≡ S is functional w.r.t. k ∧ S is left-total

The relevance of these notions to secure information ow is given by the following
theorem.

Theorem 2. For any program S;

S is function w.r.t. k ⇒ S is secure

Proof. We begin by rewriting the de�nition of “functional w.r.t. k” in the relational
calculus.

S is functional w.r.t. k
= { de�nition }

(∀w; x; y; z : k :w = k :x ∧ w〈S〉y ∧ x〈S〉z : k :y = k :z)
= { trading, thrice }

(∀w; x; y; z : w〈S〉y ∧ k :y 6= k :z : k :w 6= k :x ∨ ¬ x〈S〉z)
= { trading, de Morgan }

(∀w; z :: (∀ x; y :: w〈S〉y ∧ k :y 6= k :z
⇒ ¬(k :w = k :x ∧ x〈S〉z)))

= { pred calc }
(∀w; z :: (∃y :: w〈S〉y ∧ k :y 6= k :z)

⇒ (∀ x :: ¬(k :w = k :x ∧ x〈S〉z)))
= { de Morgan }

(∀w; z :: (∃y :: w〈S〉y ∧ k :y 6= k :z)
⇒ ¬(∃ x :: k :w = k :x ∧ x〈S〉z))

= { relational composition, de�nition of HH }
(∀w; z :: w〈S ; ¬HH 〉z ⇒ ¬ w〈HH ; S〉z)

= { relational calculus }
S ; ¬HH ⊆ ¬(HH ; S)

Remark. In the relational calculus (see, e.g., [7]), the fact that a relation f is “(left-)
functional” is expressed as

f ; ¬Id ⊆ ¬f:

Note that this may be written as

f ; ¬Id ⊆ ¬(Id ; f):

R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138 129

One can view this as a special case of the result above, obtained by taking for k the
entire set of underlying variables and letting h be a constant (i.e., a single variable
whose domain has exactly one element), in which case HH is just Id.

Thus, for any S that is a function with respect to k, we have

true
= { S is left-total }

true ⊆ S ; true
= { relational calculus: distributing ; over ∪ }

true ⊆ S ; ¬HH ∪ S ; HH
⇒ { S is functional w.r.t k, calculation above }

true ⊆ ¬(HH ; S) ∪ S ; HH
= { relational calculus: shunting }

HH ; S ⊆ S ; HH
= { (15) }

S is secure

Remark. It should be noted that “S is a function w.r.t. k” does not mean that S is
also deterministic, nor vice-versa. The programs HH and k := h serve respectively as
counterexamples.

The following corollary uses the theorem above to derive a formulation for security
in terms of Hoare triples for total correctness.

Corollary 3. For any non-miraculous program S and any function f;

(∀M :: { k = M } S { k = f:M }) ⇒ S is secure:

Proof. In order to avoid case analyses, we extend f to ⊥ by using the convention
that f:⊥ = ⊥. (Recall that ⊥ is the special value of k in the looping outcome ∞.)
We start by rewriting the hypothesis in relational terms:

(∀M :: { k = M } S { k = f:M })
= { Connection between total correctness Hoare triple and wp }

(∀M :: [k = M ⇒ wp:S:(k = f:M)])
= { “[]” quanti�es over all nonlooping states }

(∀M :: (∀w : w 6=∞ : (k = M):w ⇒ wp:S:(k = f:M):w))
= { Relational property of wp (12) and pred calc }

(∀M :: (∀w : w 6=∞ : k :w = M
⇒ (∀y : w〈S〉y : y 6=∞ ∧ k :y = f:M)))

= { unnesting, trading }
(∀M;w; y : w 6=∞ ∧ k :w = M ∧ w〈S〉y :

y 6=∞ ∧ k :y = f:M)
= { one-point rule and Leibniz }

130 R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138

(∀w; y : w 6=∞ ∧ w〈S〉y : y 6=∞ ∧ k :y = f:(k :w))
⇒ { weakening (by dropping y 6=∞) }

(∀w; y : w 6=∞ ∧ w〈S〉y : k :y = f:(k :w))
= { using w =∞ ∧ w〈S〉y ⇒ y =∞, convention f:⊥ = ⊥ }

(∀w; y : w〈S〉y : k :y = f:(k :w))
Now, assuming the hypothesis, we show that S is a function w.r.t. k, and hence – by
the theorem above – that S is secure. Since S is non-miraculous, the relation S is
left-total, thus it only remains to show that S is functional w.r.t. k. We observe

S is functional w.r.t. k
= { De�nition }

(∀w; x; y; z :: k :w = k :x ∧ w〈S〉y ∧ x〈S〉z ⇒ k :y = k :z)
⇐ { weakening the antecedent by using the calculation above }

(∀w; x; y; z :: k :w = k :x ∧ k :y = f:(k :w) ∧ k :z = f:(k :x)
⇒ k :y = k :z)

⇐ { Rule of Leibniz, since f is a function }
true

We end this section by applying this corollary to a couple of examples.

7.0. Examples

As a �rst example, let S be the following program, where k; h are nonnegative
integers.

h := |h| ; while 0¡ h do h := h− 1 ; k := k + 1 end ; k := h

We sketch the proof that S is secure by applying the Corollary above with the constant
function 0. The annotated program showing { k = M } S { k = 0 } is shown below:

{ k = M }
h := |h|
{ 06h }
; while 0¡ h do

{ Invariant : 06h }
{ Variant function : h }

; h := h− 1
; k := k + 1
end

{ h = 0 }
k := h
{ k = 0 }

R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138 131

As a second example, program (2) can be shown to be secure by proving the Hoare
triple

{ k = M } k := h ; k := k − h { k = f:M }

where f is the constant function 0. Note that Corollary 3 is not helpful for the two
examples in Section 6.1, since it can only be used to prove programs secure, but not
to declare them insecure. Finally, note that the Corollary cannot be applied to check a
program such as

“assign to k an arbitrary value”

since such a program is not functional with respect to k.

8. Abstract variables

As mentioned in Section 2, one of the features of our semantic approach is that
h and k need not be actual variables of a program. Indeed, as we describe in this
section, our de�nition of security may be used even when h; k are de�ned abstractly,
as functions of the actual program variables.
To illustrate the idea, consider a program S operating on a nonempty list ‘ of votes

recorded in an election. Suppose S is supposed to read list ‘ and report the name of
the winner, but not reveal any information about the winning margin of the victor. (For
the sake of simplicity, we assume that ties are resolved in a �xed manner, so that there
is always a unique winner, and that the winning margin is always a positive integer.)
To apply our condition to check security of S, we let k denote the function on ‘ that
returns the name of the winner and let h denote the function on ‘ that returns the
winning margin. (Note that both h and k are functions of ‘, but not actual variables
of the program.) We can then use these de�nitions of k and h to check whether the
program leaks any information about the winning margin.
However, there is one precaution that needs to be observed when using our condition

for security with h and k de�ned as functions of the underlying program variables. In
justifying that our de�nition (7) using HH captures the intent that “observations of k
do not leak any information about the initial value of h”, we have (implicitly) assumed
that h may be assigned a value independently of k. This allowed us to treat HH as an
arbitrary assignment to h that leaves k unchanged. When h and k are disjoint program
variables, this condition is met trivially and need not be stated explicitly. When they are
functions over the same program variables, however, we need an additional condition
to ensure that h may still be assigned values independently of k. With V ranging over
the domain of the program variables and M;N ranging over the ranges of the functions
k; h respectively, this condition is as follows:

(∀M;N :: (∃V :: k:V = M ∧ h:V = N)) (28)

132 R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138

For instance, in the example above, M ranges over the set of candidate names and
N ranges over the positive integers. It is easy to show that the independence condition
(28) follows from the fact that given any name M and a winning margin N , there is
at least one choice V for ‘ for which k:V = M and h:V = N (e.g., let V be the list
consisting of the name M repeated N times).
In the following subsection, we illustrate the use of abstract variables with an

example.

8.0. Example

We are given an array a which stores information about the employees of a company.
Each element of a is a record with the following �elds:

name; salary; rank;

where rank is of type {Manager; Subordinate}. Let S be a program which is supposed
to compute the total salary tot of all subordinates. We show how we can check whether
S leaks any information about the managers.
Clearly type-based schemes are di�cult, if not impossible, to use, since records are

distinguished by the value of the rank �eld, which cannot be checked syntactically.
However, we can apply our semantic condition by de�ning h and k as functions of a
and tot in the following way.
For any record r, introduce the shorthands Man and Sub by

Man:r ≡ r:rank = Manager

Sub:r ≡ r:rank = Subordinate

Next, de�ne two functions pm and ps from arrays to arrays as follows. For any array
A of records,

pm:A = subarray of A consisting of records r satisfying Man:r

ps :A = subarray of A consisting of records r satisfying Sub:r

Now h and k are de�ned as functions of the concrete variables a and tot as follows:

h = pm:a and k = 〈ps:a; tot〉:

Note that these de�nitions satisfy the independence condition (28). (For any given
values N;M for h; k, choose the concrete variable a to be any interleaving of N and
the �rst component of M and take tot to be the second component of M .)

R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138 133

To illustrate how these de�nitions may be used, we consider the following
program S:

tot := 0
; var j in

j := 0
; while j 6= size:a do

if Sub:(a[j]) then tot := tot + a[j]:salary end
; j := j + 1
end

end

We show that S is secure. De�ne auxiliary functions ssum and psum as follows: for
any array A and any integer j

ssum:A= (� i : 06i ¡ size:A : A[i]: salary)

psum:j:A= (� i : 06i ¡ j ∧ Sub:(A[i]) : A[i]: salary)
We note the following property about ssum, ps, and psum: for any A

ssum:(ps:A) = psum:(size:A):A: (29)

Finally, we de�ne function f as follows: for any array A and integer T ,

f:〈A; T 〉 = 〈A; ssum:A〉:
To show that S is secure, it is enough – on account of Theorem 2 – to show that it
satis�es the following Hoare triple, for any array A and any integer T :

{ k = 〈A; T 〉 } S { k = f:〈A; T 〉 }
We sketch the outline of this proof below by annotating S with assertions as follows:

{ ps:a=A ∧ tot=T }
tot := 0
{ ps:a=A ∧ tot=0 }

; var j in
j := 0

{ ps:a=A ∧ tot= j=0 }
; while j 6= size:a do

{ Invariant : ps:a=A ∧ tot=psum:j:a ∧ 06j6size:a }
{ Variant function : size:a− j }
if Sub:(a[j]) then tot := tot + a[j]:salary end
; j := j + 1
end

end
{ ps:a=A ∧ tot=psum:(size:a):a }

134 R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138

9. Related work

The problem of secure information ow has been studied for several decades.
A commonly used mathematical model for secure information ow is Denning’s lattice
model [4], which is based on the Bell and La Padula security model [3]. Most ap-
proaches to static certi�cation of secure information ow (an area pioneered by Denning
and Denning [4,5]) seem to fall into one of two general categories: type systems and
data ow analysis techniques. In this section, we discuss these general approaches and
compare them to our work. A historical perspective of secure information ow appears
in a book by Gasser [9]. Some newer work in this area includes the SLam calculus
[11], Myers and Liskov’s decentralized model whose certi�cation process leaves some
checks until run time [13], and the semantic approach by Sabelfeld and Sands [17].

9.0. Approaches based on type systems

The static certi�cation mechanism proposed by Denning and Denning [5] is es-
sentially a type checker for secure information ow. Each variable x occurring in a
program is declared with a particular security class, denoted by class:x. These security
classes are assumed to form a lattice, ordered by 6, with meet (greatest lower bound)
denoted by ↓ and join (least upper bound) denoted by ↑. The type checker computes
the class of an expression as the join of the classes of its subexpressions. For example,
for an expression involving addition, we have

class:(E + F) = class:E ↑ class:F

A security class is also assigned to each statement, and is computed as the meet of
the security classes of the variables assigned to by that statement. For instance,

class:(x :=E) = class:x
class:(if E then S else T end) = class:S ↓ class:T

The type checker certi�es a program S as being secure provided the following two
conditions hold:

0. For every assignment statement x :=E in S; class:E6class:x
1. For every conditional statement if E then T else U end in S,
class:E6class:T and class:E6class:U .

Other programming constructs, such as loops, give rise to similar requirements.
Denning and Denning gave an informal argument for the soundness of their certi-

�cation mechanism (i.e., a proof that the mechanism certi�es only secure programs).
Recently, Volpano et al. have given a more rigorous proof [19,20].
The advantage of using a type system as the basis of a certi�cation mechanism is

that it is simple to implement. However, most certi�cation mechanisms based on types
reject any program that contains an insecure subprogram. As we saw in examples

R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138 135

(0)–(3) of Section 1, a secure program may contain an insecure subprogram. In con-
trast, with a semantic approach like ours, it is possible to identify such programs as
being secure. Another problem with such approaches is that they are di�cult to use
for reasoning about programs that leak information via termination behaviour. (Vol-
pano and Smith [18] have attempted to extend their type-based approach to handle
termination behaviour. However, their type system rejects any program that mentions
h in a loop guard. Such an approach seems terribly restrictive.)

9.1. Approaches based on data ow analyses

The key idea behind approaches based on data ow analyses is to transform a given
program S into a program S ′ that provides a simpler representation of the possible data
ows in program S. This is done as follows. (We assume, as in the previous section,
that we are given a lattice of security classes.) For every variable x in program S,
program S ′ contains a variable x′, representing the highest security class of the values
used in computing the current value for x. To deal with implicit ows, S ′ also contains
a special variable local′, representing the lowest security class of the values used to
compute the guards that led to execution of the current instruction. For example, for
every assignment statement in S of the form x :=y + z; S ′ contains a corresponding
statement

x′ :=y′ ↑ z′ ↑ local′

For a conditional statement in S such as

if x=y−→S0 L z ¡ 0 −→ S1 �

S ′ contains a corresponding statement

var old := local′ in
local′ := local′ ↑ x′ ↑ y′ ↑ z′
; if true −→ S0′ L true −→ S1′ �
; local′ := old
end

where S0′ and S1′ are the statements in S ′ that correspond to S0 and S1. If a program
S has the variables k and h belonging to the security classes low and high (denoted
⊥ and >, respectively, where ⊥6>), then “S is secure” can be expressed as the
following Hoare triple on S ′:

{ k ′6⊥ ∧ h′6> ∧ local′6⊥ } S ′ { k ′6⊥ } (30)

The �rst data ow analysis approach of this kind was given by Andrews and Reitman
[1], whose treatment also dealt with communicating sequential processes. Banâtre et al.
[2] used a variation of the method described above that attempts to keep track of the
set of initial variables used to produce a value rather than only the security class of the

136 R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138

value. They also developed an e�cient algorithm for their approach, similar to data ow
analysis algorithms used in compilers, and attempted a proof of soundness. (Unlike our
description above, Andrews and Reitman used the deterministic if then else construct
rather than Dijkstra’s if � construct. Banâtre et al. used the if � construct, but, as
Volpano et al. point out, their soundness theorem is actually false for nondeterministic
programs [20].)
The data ow analysis approach can provide more precision than the simple type

system approach mentioned in the previous section. For example, the data ow anal-
ysis approach would certify programs (0) and (1). However, the approach still rejects
some secure programs that our approach will certify. This comes about because of
two reasons. The �rst reason is that the semantics of operators like + and − are lost
in the rewriting of S into S ′. Thus a program like (2), which is secure on account
of that h − h=0, is rejected by the data ow analysis approach. The second reason
is that guards are replaced by true in the rewriting of S into S ′. Thus, a program
like (3), whose security depends on when control can reach a certain statement, is
rejected.
One way to improve on this approach is to augment it with a logic, as suggested by

Andrews and Reitman [1]. Instead of rewriting program S into S ′, one superimposes
new variables (k ′; h′; local′) and their updates onto program S, and then reasons
about S using the Hoare triple (30) but with S instead of S ′. A consequence of this
approach is that one can rule out some impossible control paths, such as the one in
program (3).

10. Summary

We have presented a simple and new mathematical characterization of what it means
for a program to have secure information ow. The characterization is general enough
to accommodate reasoning about a variety of covert ows, including nontermination.
Unlike previous methods, which were based on type systems and compiler data ow
analysis techniques, our characterization is in terms of program semantics, thus it is
more precise than these syntactic approaches.
The precision of a semantic approach comes at a price, which includes �nding various

�x-points that characterize the semantics of iterative or recursive program constructs.
We have shown that this cost can be reduced for a restricted set of programs, for
which the security condition follows from a Hoare triple.
We have also shown how our de�nition may be applied when high- and low-security

variables are de�ned abstractly.

Acknowledgements

We are grateful to Ernie Cohen and Mart��n Abadi for sharing their insights and
comments on our work. Ernie suggested the use of HH in our characterization of

R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138 137

security. Mart��n provided valuable feedback on earlier drafts of this paper. Both helped
in formulating Corollary 3.
Mark Lillibridge and Raymie Stata helped prove the formulation of security for

deterministic programs (condition (27)). Greg Nelson suggested the use of k 6=M in
extending this formulation to nondeterministic programs. Rutger M. Dijkstra suggested
the introduction of the “v-everywhere” notation as a means of avoiding the confusion
between program variables and dummy variables.
We also thank Jayadev Misra, the members of the Austin Tuesday Afternoon Club,

the participants at the September 1997 session of the IFIP WG 2.3 meeting in Alsace,
France, and the anonymous referees for MPC 98 and the special issue of Science of
Computer Programming, for providing many comments and suggestions which have
improved the exposition.

References

[1] G.R. Andrews, R.P. Reitman, An axiomatic approach to information ow in programs, ACM Trans.
Programm. Languages Systems 2 (1) (1980) 56–76.

[2] J.-P. Banâtre, C. Bryce, D. Le M�etayer, Compile-time detection of information ow in sequential
programs, in: Proc. European Symp. on Research in Computer Security, Lecture Notes in Computer
Science, vol. 875, Springer, Berlin, 1994, pp. 55–73.

[3] D.E. Bell, L.J. La Padula, Secure computer systems: mathematical foundations and model, Tech. Rep.
M74-244, MITRE Corporation, Bedford, Massachusetts, 1973.

[4] D.E. Denning, A lattice model of secure information ow, Commun. ACM 19 (5) (1976) 236–243.
[5] D.E. Denning, P.J. Denning, Certi�cation of programs for secure information ow, Commun. ACM 20

(7) (1977) 504–513.
[6] E.W. Dijkstra. A Discipline of Programming, Prentice-Hall, Englewood Cli�s, NJ, 1976.
[7] R.M. Dijkstra, Relational calculus and relational program semantics, Tech. Rep. CS-R 9408, University

of Groningen, Netherlands, 1994.
[8] E.W. Dijkstra, C.S. Scholten, Predicate Calculus and Program Semantics, Texts and Monographs in

Computer Science, Springer, Berlin, 1990.
[9] M. Gasser, Building a Secure Computer System, Van Nostrand Reinhold Company, New York, 1988.
[10] E.C.R. Hehner, Predicative programming Part I, Commun. ACM 27 (2) (1984) 134–143.
[11] N. Heintze, J.G. Riecke, The SLam calculus: programming with secrecy and integrity, in: Proc. 25th

ACM Conf. Principles of Programming Languages, ACM Press, New York, 1998, pp. 1–12.
[12] B.W. Lampson, A note on the con�nement problem, Commun. ACM 16 (10) (1973) 613–615.
[13] A.C. Myers, B. Liskov, A decentralized model for information ow control, in Proc 16th ACM Symp.

on Operating System Principles, Oper. System Rev. 31 (5) (1997) 27–37.
[14] G.C. Necula, P. Lee, Safe Kernel Extensions Without Run-Time Checking, in: Proc. 2nd USENIX

Symp. on Operating Systems Design and Implementation (OSDI), October 1996, pp. 229–243.
[15] A.W. Roscoe, CSP and determinism in security modelling, in: Security and Privacy, IEEE, New York,

1995.
[16] K. Rustan, M. Leino, R. Joshi, A semantic approach to secure information ow, in: Proc. 4th Int. Conf.

on Mathematics of Program Construction (MPC98), June 1998.
[17] A. Sabelfeld, D. Sands, A per model of secure information ow in sequential programs, in: Proc.

European Symp. on Programming (ESOP’99), 1999, to appear.
[18] D. Volpano, G. Smith, Eliminating covert ows with minimum typings, in: Proc. 10th IEEE Computer

Security Foundations Workshop, June 1997, pp. 156–168.

138 R. Joshi, K.R.M. Leino / Science of Computer Programming 37 (2000) 113–138

[19] D. Volpano, G. Smith, A type-based approach to program security, in: Theory and Practice of Software
Development: Proc.=TAPSOFT’97, 7th Int. Joint Conf. CAAP=FASE, Lecture Notes in Computer
Science, vol. 1214, Springer, Berlin, April 1977, pp. 607–621.

[20] D. Volpano, G. Smith, C. Irvine, A sound type system for secure ow analysis, J. Comp. Security
4 (3) (1996) 1–21.

