
SAFKASI: A Security Mechanism for
Language-Based Systems

DAN S. WALLACH
Rice University
and
ANDREW W. APPEL and EDWARD W. FELTEN
Princeton University

In order to run untrusted code in the same process as trusted code, there must be a
mechanism to allow dangerous calls to determine if their caller is authorized to exercise the
privilege of using the dangerous routine. Java systems have adopted a technique called stack
inspection to address this concern. But its original definition, in terms of searching stack
frames, had an unclear relationship to the actual achievement of security, overconstrained the
implementation of a Java system, limited many desirable optimizations such as method
inlining and tail recursion, and generally interfered with interprocedural optimization. We
present a new semantics for stack inspection based on a belief logic and its implementation
using the calculus of security-passing style which addresses the concerns of traditional stack
inspection. With security-passing style, we can efficiently represent the security context for
any method activation, and we can build a new implementation strictly by rewriting the Java
bytecodes before they are loaded by the system. No changes to the JVM or bytecode semantics
are necessary. With a combination of static analysis and runtime optimizations, our prototype
implementation shows reasonable performance (although traditional stack inspection is still
faster), and is easier to consider for languages beyond Java. We call our system SAFKASI (the
Security Architecture Formerly Known as Stack Inspection).

Categories and Subject Descriptors: D.1.5 [Programming Techniques]: Object-oriented
Programming; D.2.0 [Software Engineering]: General—Protection mechanisms; D.3.2 [Pro-
gramming Languages]: Language Classifications—Object-oriented languages; D.4.6 [Oper-
ating Systems]: Security and Protection—Access controls; Authentication

General Terms: Languages, Security, Design

Additional Key Words and Phrases: Java, Internet, WWW, applets, access control, stack
inspection, security-passing style

This work is supported in part by grants from the National Science Foundation (CCR-9457813
and CCR-9985332) and the Alfred P. Sloan Foundation as well as donations from Sun
Microsystems, Intel, Microsoft, Bellcore, and Merrill Lynch. Some of the material here has
appeared earlier in the Proceedings of the 1998 IEEE Symposium on Security and Privacy,
May 1998, Oakland, California.
Authors’ addresses: D. S. Wallach, Department of Computer Science, Rice University, MS 132,
P.O. Box 1892, Houston, TX 77251-1892; A. W. Appel and E. W. Felten, Department of
Computer Science, 35 Olden Street, Princeton University, Princeton, NJ 08544.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2001 ACM 1049-331X/00/1000–0341 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000, Pages 341–378.

1. INTRODUCTION

Java [Gosling et al. 1996] and a number of other recent systems (including
Microsoft’s C# [Wille 2000]) have considered the problem of running
untrusted and trusted code together. To mediate access to potentially
dangerous system resources, such as the file system or network, such
systems need a security architecture that can flexibly grant different
privileges to code having different levels of trust. Several architectures
have been proposed [Wallach et al. 1997], but Java vendors have all chosen
to use a fairly new technique called stack inspection [Gong and Schemers
1998; Netscape Communications Corporation 1997; Microsoft Corporation
1997].

Stack inspection is an algorithm for preventing untrusted code from
using sensitive system resources. Before a dangerous operation proceeds, a
call is made to the “security manager,” which implements a reference
monitor. The security manager will consider, in sequence, the principals
that “own” each stack frame. A principal is either the Web site from which
the code was loaded or a signer who applied a digital signature to the code.
If a stack frame’s principal is found to be unprivileged for the operation in
question, permission is denied and the operation fails (see Figure 1).

In some cases, trusted code will use a dangerous resource, such as
general access to the file system and network, and export a safe service,
such as the ability to load a Web URL using a file cache. To make this
possible, an additional mechanism allows trusted code to “enable its
privileges,” serving as an explicit assertion to take responsibility for future
dangerous actions. This assertion is generally recorded as a mark upon the
caller’s stack frame, and is later recognized by the security manager. Stack
inspection has numerous software engineering and security benefits, in-
cluding higher assurance that software bugs will not lead to security
violations. We discuss the space of possible security architectures and their
relative benefits in Wallach et al. [1997].

Fig. 1. Java’s stack-walking algorithm.

342 • D. S. Wallach et al.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

In a stack inspection system, each method (or procedure) is owned by a
principal, and each principal has a finite set of privileges. The primitive
operations in a stack inspection system, and their explanation are:

—BeginPrivilege() Enable privileges. Implemented by Netscape and Mi-
crosoft by marking the current stack frame as privileged. Implemented
by Sun by passing an object to DoPrivilged() which is involved in a
new and privileged stack frame.

—CheckPrivilege~T ! Check whether privileges for a given target T are
enabled. CheckPrivilege is implemented by searching stack frames from
the current one. If a marked frame is found whose owner possesses the
privilege to use T, CheckPrivilege is successful and the search termi-
nates. If a frame is found whose owner is not authorized to use T,
CheckPrivilege raises an exception. If any other frame is found, the
search continues. If the search completes without finding an unprivileged
stack frame, the requested operation is either allowed (with Microsoft
and Sun) or denied (with Netscape). The exact algorithm appears in
Figure 1.

The exact syntax varies across the implementations of Netscape, Microsoft,
and Sun, but all behave similarly enough that the differences are unimpor-
tant to this discussion.

The rationale for stack inspection is that if an unprivileged method
owned by Alice calls the deleteFile() method, the CheckPrivilege done
in deleteFile will fail when it encounters Alice’s frame. But suppose Alice
calls a system-owned quicksort routine and tries to cheat by passing
deleteFile (or an object containing that method) as the “compare” func-
tion? We do not want deleteFile to believe it was authorized by the
(extremely privileged) system principal just because it was called directly
by a system-owned method! In this case, CheckPrivilege will examine the
stack frame for quicksort, find that it is neither unprivileged nor enabled,
and continue on to find the unprivileged Alice frame, which will cause a
failure of CheckPrivilege. This class of attack is sometimes called the
confused deputy problem [Hardy 1988], where an attacker attempts to take
advantage of a subroutine that has more privileges than it needs.

On the other hand, if Alice calls a LoadURL method owned by system,
which executes BeginPrivilege and then calls another system routine which
in turn calls deleteFile , the CheckPrivilege call will succeed.

Stack inspection is a technique to help the Java system satisfy the
principle of least privilege [Saltzer and Schroeder 1975]. With stack inspec-
tion, the Java system may operate with less than its full privileges active at
all times, and thus exposure to attacks is reduced. This proved extremely
useful in Netscape 3.0 [Roskind 1996]. An additional benefit of requiring
explicit calls to enable privileges was that these calls could be quickly
identified with text-searching tools such as grep and then subjected to code
auditing. With limited time to audit a large code base, this technique

SAFKASI: A Security Mechanism for Language-Based Systems • 343

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

allows an audit to focus its efforts on code that will effect the security of the
system.

Stack inspection, as described above, has three weaknesses:

(1) It is not clear whether this mechanism achieves real security, or how to
reason about the security that it might achieve.

(2) The operational definition of stack inspection overconstrains its imple-
mentation. An implementation would find it difficult to collapse stack
frames by inlining or tail-recursion elimination, since these optimiza-
tions would change the state visible to the security system. Any
interprocedural analysis would have to take into account these special
side-effects to the stack frame, and their observation by callees arbi-
trarily far up the stack. This problem is essentially similar to the
problem of supporting program debugging in the presence of optimized
code [Hennessy 1982; Tolmach and Appel 1990].

(3) The high cost of the CheckPrivilege operation discourages its use. For
example, the standard I/O library calls CheckPrivilege only on opening
a file, not on each access to the resulting file descriptor. In effect, the
file descriptor is treated as a capability, which could perhaps be
justified in a security policy—but it can lead to a failure of capability
confinement [Lampson 1971] if the file descriptor escapes to unprivi-
leged places. We conjecture that this design decision was made because
CheckPrivilege was expensive.

We have solved all three of these problems:

(1) In Section 3, we show that stack inspection can be explained using a
simple belief logic (designed by Abadi et al. [1993] and summarized in
Section 2).

(2) In Sections 4 and 5, we describe a new semantics of stack inspection
that we call “security-passing style” [Wallach and Felten 1998], which
we prove to be faithful to the original stack inspection model. By
implementing this semantics directly, we can express all security
operations in plain Java (or any underlying language with procedure
calls). Not only does this avoid interference with program analyses and
optimizations, but standard dataflow-based compiler optimizations now
help optimize the security operations for free.

(3) Each of the operations in our new implementation can be performed in
O~1! time. Still, some of these operations are relatively expensive.
Section 6 describes a number of optimizations based on static analysis
of the program. In many cases, it is possible to identify and remove
security operations without changing the semantics of the security
system.

In building our system, described in Section 7, we constrain ourselves to
make no changes to the underlying Java virtual machine [Lindholm and

344 • D. S. Wallach et al.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

Yellin 1996]. We operate strictly by rewriting Java classes at load time, so
the just-in-time compiler needs to know nothing about the transformation
we apply to the code. Our implementation works within the context of any
standard JVM/JIT, and we show measurements of its performance with a
current compiler.

2. ACCESS CONTROL LOGIC

In order to gain a more sophisticated understanding of stack inspection, we
found it necessary to build a model of the system. A good model would hide
many of the details of the system and allow us to reason about it. In
particular, we would like the model to capture the “security state” of the
system at any time and let us express transitions from this state as
mathematical operations.

There are no hard and fast rules of how one should model a system
formally. Instead, the most expedient path is to find a formal model of a
similar system and adapt it to stack inspection. The system that we decided
to borrow from was originally used to describe authentication and access
control in the Taos operating system [Lampson et al. 1992; Wobber et al.
1994]. In Taos, the operating system maintains information about every
channel between processes on the same machine and across the network.
When a process receives a request, the process may ask the system to
identify who has connected to it. Because a channel may pass through
multiple points of trust (the local operating system, the network, the
remote operating system, etc.), the system explicitly puts these into the
principal, creating a compound principal. Taos actually included a theorem
prover inside the system which could, given these compound principals and
a security policy, both expressed in the same formal logic, generate proofs
of whether a given request is authorized to occur. The logic, a relatively
simple propositional or modal logic with no negation of statements (and
with certain restrictions on the form of statements), allows the theorem
prover to run fast enough to not dramatically impact system performance.
We decided to adopt this logic, originally specified by Abadi et al. [1993]
(hereafter, ABLP logic), to model stack inspection.

2.1 ABLP Logic

Stack inspection can be modeled using a subset of ABLP. This section will
describe the subset and give a general flavor for how it can be used.

The logic is based on a few simple concepts: principals, conjunctions of
principals, targets, statements, quotation, and authority.

—A principal is a person, organization, or any other entity that may have
the right to take actions or authorize actions. In addition, entities such as
programs and cryptographic keys are often modeled as principals.

—A target represents a resource that we wish to protect. Generally, a
target is something to which we might like to attach an access control

SAFKASI: A Security Mechanism for Language-Based Systems • 345

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

list. (Targets are traditionally known as “objects” in the literature, but
this can be confusing when talking about an object-oriented language.)

—A statement is any kind of utterance a principal can emit. Some state-
ments are made explicitly by a principal, and some are made implicitly as
a side-effect of actions the principal takes. In other words, we interpret
P says s as meaning that we can act as if the principal P supports the
statement s. Note that saying something does not make it true; a speaker
could make an inaccurate statement carelessly or maliciously. The logic
supports the informal notion that we should place faith in a statement
only if we trust the speaker and it is the kind of statement that the
speaker has the authority to make. Thus, if a speaker makes an inaccu-
rate statement, we will not believe the statement. Also, speakers cannot
make statements that lead to a logical contradiction (e.g., A . ¬ A)
because negation is not allowed in ABLP.
The most common type of statement we will use looks like P says
Ok~T ! where P is a principal and T is a target; this statement means that
P is authorizing access to the target T. By saying an action is “Ok” the
speaker is saying the action should be allowed in the current context but
is not specifically ordering that the action take place.

—The logic supports conjunctions of principals. Specifically, saying ~A ∧ B!
says s is the same as saying both A says s and B says s.

—Quotation allows a principal to make a statement about what another
principal says. The notation AB says s, which we pronounce “A quoting
B says s,” is equivalent to A says ~B says s!. As with any statement, we
must consider whether A’s utterance might be incorrect, and our degree
of faith in s will depend on our beliefs about A and B. When A quotes B,
we have no guarantee that B ever actually said anything.

—We grant authority to a principal by allowing that principal to speak for
another principal who has power to do something. The statement A f B,
pronounced “A speaks for B,” means that if A makes a statement, we can
assume that B supports the same statement. If A f B, then A has at
least as much authority as B. Note that the f operator can be used to
represent group membership: if P is a member of the group G, we can say
P f G, meaning that P can exercise the rights granted to G.
When proving theorems, the A f B means occurrences of A can be
replaced with A ∧ B. Thus, when we hear a statement from A, we can act
as if it were spoken jointly by A and B together.

3. MAPPING JAVA TO ABLP

We will now describe a mapping from the stack, the privilege calls, and the
stack inspection algorithm into ABLP logic.

346 • D. S. Wallach et al.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

3.1 Principals

In Java, code is digitally signed with a private key, then shipped to the
virtual machine where it will run. If KSigner is the public key of Signer, the
public-key infrastructure can generate a proof 1 of the statement

KSigner f Signer. (1)

Signer ’s digital signature on the code Code is interpreted as

KSigner says~Code f KSigner!. (2)

Using Eqs. (1) and (19) (see Appendix A.2), this implies that

Code f Signer. (3)

When Code is invoked, it generates a stack frame Frame. The virtual
machine assumes that the frame speaks for the code it is executing:

Frame f Code. (4)

The transitivity of f (which can be derived from Eq. (18)) then implies

Frame f Signer. (5)

We define F to be the set of all such valid Frame f Signer statements.
We call F the frame credentials.

Note also that code can be signed by more than one principal. In this
case, the code and its stack frames speak for all of the signers. Likewise, a
“signer” can also be a “code base” (e.g., a local directory, a Web site, etc.) or
the combination of a digital signature and a code base. To simplify the
discussion, all of our examples will use single signers, but the theory can
support multiple signers or signers with code bases without difficulty.

3.2 Targets

The resources we wish to protect are called targets. For each target, we
create a dummy principal whose name is identical to that of the target.
These dummy principals do not make any statements themselves, but
various principals may speak for them.

For each target T, the statement Ok~T ! means that access to T should be
allowed in the present context. The axiom

~T says Ok~T !! . Ok~T ! (6)

says that T can allow access to itself.

1Throughout this article we assume that sound cryptographic protocols are used, and we
ignore the extremely unlikely possibility that an adversary will successfully guess or other-
wise acquire a private key.

SAFKASI: A Security Mechanism for Language-Based Systems • 347

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

While targets may be defined in relation to services offered directly
within Java (e.g., access to an in-memory database), targets are most
commonly defined in relation to services offered by the operating system
underlying the Java Virtual Machine (JVM). From the operating system’s
point of view, the JVM is a single process, and all system calls coming from
the JVM are performed under the authority of the JVM’s principal (often
the user running the JVM). The JVM’s responsibility, then, is to allow a
system call only when there is justification for issuing that system call
under the JVM’s authority. Our model will support this intuition by
requiring the JVM to prove in ABLP logic that each system call has been
authorized by a suitable principal.

Even if a JVM were running directly on the hardware without an
operating system (e.g., JavaOS [Saulpaugh et al. 1999]), control flow for
system operations would eventually reach a device driver that likely knows
nothing about privileged vs. unprivileged operation. At some point, control
must necessarily have crossed a “red line” where sufficient information was
still available to perform a security check. Security checks would naturally
occur, and targets would naturally be defined at these boundaries.

3.3 Setting Policy

We use a standard access matrix [Lampson 1971], implemented with hash
tables to achieve compact storage, to keep track of which principals have
permission to access which targets. If VM is a Java virtual machine, we
define AVM to be a set of statements of the form P f T where P is a
principal and T is a target. If ~P f T ! [AVM, this means that the local
policy in VM allows P to access T. We call AVM the access credentials for the
virtual machine VM.

3.4 Stacks

When a Java program is executing, we treat each stack frame as a
principal. At any point in time, a stack frame F has a set of statements that
it believes. We refer to this as the security context of F and write it SF. We
now describe where the security context comes from.

3.4.1 Starting a Program. When a program starts, we need to set the
security context of the initial stack frame, SF0. In the Netscape model, SF0

5 $%. In the Sun and Microsoft models, SF0 5 $Ok~T !T [Targets%. These
correspond to Netscape’s initial unprivileged state and Sun and Microsoft’s
initial privileged state.

3.4.2 Enabling Privileges. If a stack frame F calls BeginPrivilege(T) for
some target T, it is really saying it authorizes access to the target. We can
represent this simply by adding Ok~T ! to SF.

3.4.3 Calling a Procedure. When a stack frame F makes a procedure
call, this creates a new stack frame G. As a side-effect of the creation of G,

348 • D. S. Wallach et al.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

F tells G the statements in F’s security context. Thus, when F tells G a
statement S, the statement F says S is added to SG.

3.5 Checking Privileges

Before making a system call or otherwise invoking a dangerous operation,
the Java virtual machine calls CheckPrivilege() to make sure that the
requested operation is authorized. CheckPrivilege(T) returns true if the
statement Ok~T ! can be derived from F (the frame credentials), AVM (the
access control matrix), and SF (the security context of the frame that called
CheckPrivilege()).

We define VM(F) to be the virtual machine in which a given frame F is
running. Next, we can define

EF [~F ø AVM~F ! ø SF!. (7)

We call EF the environment of the frame F.
The goal of CheckPrivilege(T) is to determine, for the frame F invoking

it, whether EF . Ok~T !. While such questions are generally undecidable in
ABLP logic, we now present an efficient decision procedure that gives the
correct answer for our subset of the logic. CheckPrivilege() implements that
decision procedure.

The decision procedure check used by CheckPrivilege() takes, as argu-
ments, an environment EF and a target T. check(T, EF) examines the
statements in EF and divides them into three classes:

—Class 1 statements have the form Ok~U !, where U is a target.

—Class 2 statements have the form P f Q, where P and Q are atomic
principals.

—Class 3 statements have the form

F1F2· · ·Fk says Ok~U !,

where Fi is an atomic principal for all i, k $ 1, and U is a target.

The decision procedure next examines all Class 1 statements. If any of
them is equal to Ok~T !, the decision procedure terminates and returns true.

Next, the decision procedure uses all of the Class 2 statements to
construct a directed graph which we will call the speaks-for graph of EF.
This graph has an edge ~A, B! if and only if there is a Class 2 statement
A f B.

Next, the decision procedure examines the Class 3 statements one at a
time. When examining the statement F1F2· · ·Fk says Ok~U !, the deci-
sion procedure terminates and returns true if both

—for all i [@1, k#, there is a path from Fi to T in the speaks-for graph,
and

SAFKASI: A Security Mechanism for Language-Based Systems • 349

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

—U 5 T.

If the decision procedure examines all of the Class 3 statements without
success, it terminates and returns false.

THEOREM 1 (TERMINATION). The check decision procedure always termi-
nates.

PROOF OF THEOREM 1. The result follows directly from the fact that EF

has finite cardinality; there are a finite number of principals that the
system knows about, a finite number of stack frames that must be consid-
ered, and a security policy of finite length. This implies that each loop in
the algorithm has a bounded number of iterations; and clearly the amount
of work done in each iteration is bounded. e

In fact, the decision procedure runs quite efficiently. We can separately
analyze the runtime complexity and space complexity of each phase, as
presented above. If there are N rules in the access control matrix AVM~F !

and a stack depth of D (i.e., F has at most D elements), the cost of
computing the transitive closure of the graph will be, at worst, O~~N 1 D!2!
and consume O~~N 1 D!2! space. Then, if there are k statements in SF

(each of which can have at most D principals in its quoting chain), the cost
of checking all statements will be O~kD!. The total cost of the decision
procedure is thus O~~N 1 D!2 1 kD!.

In practice, the transitive closure of the access control policy can be
precomputed (subject to the caveats in Section 3.6.1), and the O~kD!
complexity of the security context can be lowered as well. In Section 4.1, we
describe optimizations that allow the decision procedure to execute in
constant time.

THEOREM 2 (SOUNDNESS). If the check decision procedure returns true
when invoked in stack frame F, then there exists a proof in ABLP logic that
EF . Ok~T !.

LEMMA 1. If there is a path from A to B in the speaks-for graph of EF,
then EF . ~A f B!.

PROOF OF LEMMA 1. By assumption, there is a path

~A, v1, v2, . . . , vk, B!

in the speaks-for graph of EF. In order for this path to exist, we know that
the statements

A f v1,

vi f vi11 for all i [@1, k 2 1#,

and

350 • D. S. Wallach et al.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

vk f B

are all members of EF. Since f is transitive, this implies that

EF . A f B. e

PROOF OF THEOREM 2. There are two cases in which the check decision
procedure can return true.

(1) The decision procedure returns true while it is iterating over the Class
1 statements. This occurs when the decision procedure finds the state-
ment Ok~T ! [EF. In this case, Ok~T ! follows trivially from EF.

(2) The decision procedure returns true while it is iterating over the Class
2 statements. In this case we know that the decision procedure found a
Class 2 statement of the form

P1P2· · ·Pk says Ok~T !,

where for all i [@1, k# there is path from Pi to T in the speaks-for
graph of EF. It follows from Lemma 1 that for all i [@1, k#, Pi f T. It
follows that

EF . ~TT· · ·T says Ok~T !!. (8)

Applying Eq. (6) repeatedly, we can directly derive EF . Ok~T !. e

CONJECTURE 1 (COMPLETENESS). If the check decision procedure returns
false when invoked in stack frame F, then there is no proof in ABLP logic of
the statement EF . Ok~T !.

Although we believe this conjecture to be true, we do not presently have a
complete proof. If the conjecture is false, then some legitimate access may
be denied. However, as a result of Theorem 2, no access will be improperly
granted.

If the conjecture is true, then Java stack inspection, our access control
decision procedure, and proving statements in our subset of ABLP logic are
all mutually equivalent.

THEOREM 3 (EQUIVALENCE TO STACK INSPECTION). The check decision
procedure is equivalent to the Java stack inspection algorithm of Figure 1.

PROOF OF THEOREM 3. The Java stack inspection algorithm (Figure 1)
itself does not have a formal definition. However, we can treat the evolu-
tion of the system inductively and focus on the BeginPrivilege() and
CheckPrivilege() primitives.

SAFKASI: A Security Mechanism for Language-Based Systems • 351

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

We wish to prove that given a Java stack S and its ABLP-modeled
equivalent M~S!, and for all targets T, CheckPrivilege~T, S! [check~T,
M~S!!.

Our induction is over the number of steps taken, where a step is either a
procedure call or a BeginPrivilege() operation. Steps are defined as opera-
tions on environments. For clarity, we ignore procedure return operations;
our proof can easily be extended to accommodate them.

We also assume Netscape semantics. A simple adjustment to the base
case can be used to prove equivalence between the decision procedure and
the Sun/Microsoft semantics.

Base case. In the base case, no steps have been taken. In this case, the
stack inspection system has a single stack frame with no privilege annota-
tion; in the ABLP model, the stack frame’s security context is empty. In
this base case, CheckPrivilege(T, S0) and check~T, M~S0!! will both re-
turn false.

Inductive step. We assume that N steps have been taken (N $ 0) and
that we are in a situation where both CheckPrivilege(T, S) and check~T,
M~S!! would yield the same result. Now there are two cases: BeginPrivi-
lege(T) step: In the stack inspection system, this adds an enabled-
privilege(T) annotation on the current stack frame. In the ABLP model, it
adds Ok~T ! to the current security context (a part of M~S!).

If this BeginPrivilege() call is followed by a call to CheckPrivilege(T),
the Java stack inspection algorithm will succeed because the enabled-
privilege(T) flag is immediately discovered. Likewise, a call to check~T,
M~S!! will succeed because Ok~T ! is found in M~S!; Ok~T ! is what check
is trying to prove.

If this BeginPrivilege() call is followed by a call to CheckPrivilege(U)
with U Þ T, the new stack annotation or statement will be irrelevant to
the result of either CheckPrivilege() or check, so we fall back on the
inductive hypothesis to show that both systems give the same result.

Procedure call step. Let P be the principal of the procedure that is
called. In the stack inspection system, this adds to the stack an unanno-
tated stack frame belonging to P. In the ABLP system, it prepends “P says”
to the front of every statement in the current security context.

When CheckPrivilege(T) is called, two things occur. First, the call is
treated as a normal procedure call, with the caller’s principal being
prepended to the statements in the security context. Then, there are two
subcases.

—P is not trusted for T. In the stack inspection case, CheckPrivilege(T)
will fail because the current frame is not trusted to access T. In the
ABLP case, the check will deny access because every statement starts
with “P says” and P does not speak for T.

352 • D. S. Wallach et al.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

—P is trusted for T. In the stack inspection case, the stack search will
ignore the current frame and proceed to the next frame on the stack. In
the ABLP case, since P f T, the “P says” on the front of every state-
ment has no effect. Thus both systems give the same answer they would
have given before the last step. By the inductive hypothesis, both
systems thus give the same result. e

3.6 Extensions to the Model

There are a number of cases in which Java implementations differ from the
model we have described. These are minor differences with no effect on the
strength of the model.

3.6.1 Groups. It is natural to extend the model by allowing the defini-
tion of groups. In ABLP logic, a group is represented as a principal, and
membership in the group is represented by saying the member speaks for
the group. Deployed Java systems use groups in several ways to simplify
the process of defining policy.

The Microsoft system defines “security zones” that are groups of princi-
pals. A user or administrator can divide the principals into groups with
names like “local,” “intranet,” and “internet,” and then define policies on a
per-group basis.

Netscape defines “macrotargets” that are groups of targets. A typical
macrotarget might be called “typical game privileges.” This macrotarget
would speak for those privileges that network games typically need.

The Sun system has a general notion of targets in which one target can
imply another. In fact, each target is required to define an implies()
procedure, which can be used to ask the target whether it signifies a
superset of the privileges associated with another target. This can be
handled with a simple extension to the model.

Unfortunately, Sun has not clearly defined whether the implies()
relationships are transitive, and if they are, whether this information may
be used to optimize security queries. One useful optimization might be to
compute the transitive closure of the implies() graph, which would then
allow for constant-time queries. However, if a target is allowed to change
its mind about what other targets it implies, the security system might be
forced to reevaluate the implies() relationships on every security query.

3.6.2 Threads. Java is a multithreaded language, meaning there can be
multiple threads of control, and hence multiple stacks can exist concur-
rently.

When a new thread is created in Netscape’s system, the first frame on
the new stack begins with all privileges disabled. This is modeled as the
new stack beginning with an empty security context.

In Sun and Microsoft’s systems, the first frame on a new stack inherits
the security context of the previous thread at the time the new thread is
created. This is done by doing a full stack inspection operation, capturing
the state, and storing it in thread-local storage. Later, when a privilege is

SAFKASI: A Security Mechanism for Language-Based Systems • 353

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

checked, the normal stack inspection algorithm will first consider stack
frames of the current thread and then will continue through the saved state
from the parent thread. This is modeled as the new stack being passed a
reference to its parents security context in precisely the same fashion as
when a normal procedure call occurs.

3.6.3 Enabling a Privilege. The model of BeginPrivilege() in Section
3.4.2 differs somewhat from the Netscape implementation of stack inspec-
tion, where a stack frame F cannot successfully call BeginPrivilege(T)
unless the local access credentials include F f T. The restriction imposed
by Netscape is related to their user interface and is not necessary in our
formulation, since the statement F says Ok~T ! is ineffectual unless F f T.
Sun Java 2.0’s implementation is closer to our model.

3.6.4 Disabling a Privilege. Netscape supports a primitive to disable a
privilege. In the stack inspection model, this is implemented by writing an
appropriate flag to the stack frame that requests a privilege to be disabled.
In the normal stack inspection step, disabled privileges are checked explic-
itly before enabled privileges. In the event a disabled privilege is discov-
ered, the search immediately terminates.

In our standard model, disabling a privilege for a target T could be
implemented as dropping any statements of the form x f T from the
current belief set. However, privilege disabling does not mix well with
grouping extensions (see Section 3.6.1). In particular, if a group of either
principals or targets was enabled and a different group was disabled, the
system would either need to perform set-subtraction, or would need to
retain both positive and negative statements, as well as the order in which
to evaluate them. In addition to becoming logically more complex, this
would inhibit many of the optimizations described in the remainder of this
article.

In practice, programmers use the disable operation in combination with
an enable operation to bracket a dangerous operation. Sun captures this
notion with their DoPrivileged() operation, which is passed, as an
argument, an object to be invoked with higher privilege. This is equivalent
to that object invoking BeginPrivilege() when it starts execution. These
privileges naturally disappear when the privileged method returns.

3.6.5 Frame Credentials. Java implementations do not treat stack
frames or their code as separate principals. Instead, they track only the
public key that signed the code and call this the frame’s principal. As we
saw in Section 3.1, for any stack frame, we can prove the stack frame
speaks for the public key that signed the code. In practice, neither the stack
frame nor the code speaks for any principal except the public key. Likewise,
access control policies are represented directly in terms of the public keys,
so there is no need to separately track the principal for which the public
key speaks. As a result, the Java implementations say the principal of any
given stack frame is exactly the public key that signed that frame’s code.

354 • D. S. Wallach et al.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

This means that Java implementations need not have an internal notion of
the frame credentials described here.

4. IMPROVED IMPLEMENTATION

In addition to improving our understanding of stack inspection, our model
and decision procedure can help us find more efficient implementations of
stack inspection. We improve the performance in two ways. First, we show
that the evolution of security contexts can be represented by a determinis-
tic pushdown automaton; this opens up a variety of efficient implementa-
tion techniques. Second, we describe security-passing style, an efficient and
convenient integration of the pushdown automaton with the state of the
program.

4.1 Security Contexts and Automata

We can simplify the representation of security contexts by making two
observations about our decision procedure.

(1) Interchanging the positions of two principals in any quoting chain does
not affect the outcome of the decision procedure.

(2) If P is an atomic principal, replacing PP by P in any statement does
not affect the result of the decision procedure.

Both observations are easily proven, since they follow directly from the
structure of the decision procedure.

We also use the observation in Section 3.6.5 that we need not consider
frame credentials, but need only consider the signer of a given stack frame.
This means that multiple stack frames corresponding to the same signa-
ture will be considered to have the same principal.

It then follows that without affecting the result of the decision procedure
we can rewrite each statement in the security context into a canonical form
in which each atomic principal appears at most once, and the atomic
principals appear in some canonical order. After this transformation, we
can discard any duplicate statements from the security context.

Since the set of atomic principals is finite, the set of targets is finite, and
no principal or target may be mentioned more than once in a canonical-
form statement, there is therefore a finite set of possible canonical-form
statements. It then follows that only a finite number of canonical-form
security contexts may exist.

While the number of possible security contexts can grow exponentially in
the number of principals and targets, it is nonetheless finite. Therefore, we
can represent the evolution of a stack frame’s security contexts by a finite
automaton, where each state in the automaton corresponds to a security
context. Since stack frames are created and destroyed in LIFO order, the
execution of a thread can be represented by a finite pushdown automaton,
where calling a procedure corresponds to a push operation (and a state

SAFKASI: A Security Mechanism for Language-Based Systems • 355

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

transition), returning from a procedure corresponds to a pop operation, and
BeginPrivilege() corresponds to transitions on the finite-state graph.

Representing the system as an automaton has several advantages. It
allows us to use analysis tools such as model checkers to derive properties
of particular policies. It also admits a variety of efficient implementation
techniques such as lazy construction of the state set and the use of
advanced data structures.

Furthermore, the results of a security check can be stored along with the
security contexts. So in cases where the same security check may be made
numerous times (such as when one program opens a multitude of files),
only the first check would require invoking the decision procedure. Subse-
quent security checks could consult a local cache and execute in constant time.

One concern is that, because the space of all possible security contexts is
exponential in the number of principals and targets, the amount of memory
needed will be similarly exponential. This concern is addressed by noting
that very few of these security contexts will ever be used. A lazy implemen-
tation, one which only allocates memory for security contexts as they are
needed, would only allocate memory proportional to the complexity of its
security needs. Thus, if the execution of a program only uses a handful of
distinct security contexts, only those few contexts will be allocated. Con-
versely, if a program is truly exponential in its security complexity (i.e., the
number of unique security contexts used during the lifetime of a program is
exponential), it would need to run for an exponential amount of time in
order to cause the full security context space to be instantiated. Such
degenerate cases are unlikely to occur in practice.

4.2 Security-Passing Style

The implementation discussed thus far has the disadvantage that security
state is tracked separately from the rest of the program’s state. This means
that there are two subsystems (the security subsystem and the code
execution subsystem) with separate semantics and separate implementa-
tions of pushdown stacks coexisting in the same Java Virtual Machine
(JVM). We can improve this situation by implementing the security mech-
anisms in terms of the existing JVM mechanisms.

We do this by adding an extra, implicit argument to every procedure. The
extra argument is a pointer into the finite-state space of the automaton.
This eliminates the need to have a separate pushdown stack for security
contexts or maintain stack annotations on the existing runtime stack. We
dub this approach security-passing style, by analogy to continuation-pass-
ing style [Steele 1978], a transformation technique used by some compilers
that also replaces an explicit pushdown stack with implicitly passed
procedure arguments. An implementation of security-passing style is pre-
sented in Section 7.

The main advantage of security-passing style is that once a program has
been rewritten into SPS, it no longer needs any special security functionality
from the JVM. The rewritten program consists of ordinary Java bytecode

356 • D. S. Wallach et al.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

that can be executed by any JVM, even one that knows nothing about stack
inspection. This has many advantages, including portability and efficiency.
The main performance benefit is that the JVM can use standard compiler
optimizations such as dead-code elimination and constant propagation to
remove unused security-tracking code, or inlining and tail-recursion elimi-
nation to reduce procedure call overhead.

Another advantage of security-passing style is that it lets us express the
stack inspection model within the existing semantics of the Java language,
rather than requiring an additional and possibly incompatible definition for
the semantics of the security mechanisms. Security-passing style also lets
us more easily transplant the stack inspection idea into other language and
systems.

5. THE SECURITY-PASSING STYLE TRANSFORMATION

This section describes the design of the security-passing style transforma-
tion. Note that our SPS model is simpler than the stack inspection model
employed by the various Java vendors. Our model only supports Begin-
Privilege(), CheckPrivilege(), and function calls. Furthermore, in the sim-
plified model, one may only enable privileges for a specific root target Troot,
where @targets Tx : Troot f Tx. As a shorthand, we write BeginPrivilege()
with no target argument and speak of Ok() with no target. These restric-
tions could all be lifted at the cost of some added notational complexity.

5.1 SPS Conversion

For this analysis we assume a simple programming language with methods
or functions:

P 3 function f~a1, . . . , an! 5 E

P 3 PP

E 3 p.g~x1, . . . , xm!

E 3 E 1 E

E 3 let v 5 E in E

E 3 BeginPrivilege E

E 3 CheckPrivilege~T !

where a program is a collection of function definitions; a function body
contains function/method calls as well as arithmetic expressions and (not
shown here) sequencing statements. The (BeginPrivilege E) statement
asserts privileges for the dynamic extent of the execution of E, and
CheckPrivilege ~T ! checks whether the target T is currently accessible. We
use lowercase letters to range over program variables and T to stand for
target names.

SAFKASI: A Security Mechanism for Language-Based Systems • 357

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

We assume that each method f has an owner (principal) owner~ f !.
Ownership is associated with code, not classes: in an object-oriented
language, if object p belongs to class C2, which inherits method-body f from
superclass C1, then owner~ p.f! is C1, not C2. In principle, this could go
either way, but the designers chose to use the concrete implementation’s
owner because it is easier to ascertain at runtime, and it avoids the danger
that a privileged method may call what it thinks is a method of the same
class, yet is actually a method in a subclass. This would be an example of a
confused deputy problem which we wish to avoid (see Section 1).

Figure 2 shows the rules for converting a program to security-passing
style. The conversion SPSfun is applied to each function; SPS is applied to
each expression. Rule 1 involves the introduction of new local variables s
and s9 whose names are not used elsewhere. The function f is rewritten to
take s as a new formal parameter, the security context, which will be the
representation of a statement in the ABLP logic. We then construct a new
security context with s9 5 owner~ f ! says s, and SPS-convert the body of
the function using s9 for all outgoing function calls.

Rule 2 of Figure 2 shows the use of s9 as the “extra” argument of an
outgoing call; rule 3 shows that most statements are unaffected by SPS
conversion. Rule 4 shows that BeginPrivilege discards the security context
s9 and simply uses Ok(); rule 5 shows that CheckPrivilege invokes the
decision procedure check, described in Section 3.5.

To complete the definition of SPS conversion, we assume that the main
function of the converted program is called with a security context allowing
no access to any target (following Netscape) or full access to every target
(following Sun).

We have two variants of SPS conversion; Figure 2 shows a “caller-says”
convention, in which a call from g to f involves a computation by g (the
caller) of says~owner~g!, s!. Figure 3 shows a “callee-says” convention, in
which a call from g to f involves a computation by g of says~owner~ f !, s!.

Either of these conventions is semantically equivalent to stack inspec-
tion, but slightly different compile-time optimizations apply, as we will
show. For example, in caller-says, owner~this.f! can always be computed
at compile time; but in callee-says SPS conversion of an object-oriented
language, owner~p.g! requires either dynamic method lookup or static
analysis.

(1) SP S fun function f a1 an E
function f a1 an s let s saysowner f s in SP S E s

(2) SP S p g x1 xm s p g x1 xm s
(3) SP S E1 E2 s SP S E1 s SP S E2 s
(4) SP S BeginPrivilegeE s SP S E Ok()
(5) SP S CheckPrivilegeT s check T s

Fig. 2. “Caller-says” SPS conversion.

358 • D. S. Wallach et al.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

5.2 Rewriting Java Bytecodes

Stack inspection was originally implemented at Netscape (and then at Sun
and Microsoft) by adding support for it to the runtime system. These
extensions required changing the stack frame representation, which in turn
affected the garbage collector and JIT compiler.

With SPS conversion, we can express the stack inspection security
architecture in “vanilla” Java bytecodes (or source), without stack-frame
marks or any other constraints on the Java virtual machine implementa-
tion. Every method has an extra parameter for passing the security
context, but this parameter and its representation are just Java. SPS
conversion is also easier to conceive in languages beyond Java. If the
language has function calls, it should be amenable to SPS conversion.

Actually doing the SPS conversion, in practice, turns out to be trickier.
Our implementation, with all its warts, is described in Section 7.

6. OPTIMIZATION

Netscape and Sun’s implementation of stack inspection—by marking
frames at BeginPrivilege() and scanning frames in CheckPrivilege()—has
very low cost for the vast majority of methods, which do not perform either
operation. There is a difficult-to-measure cost of their scheme, in that it
may inhibit useful optimizations such as inlining, tail-call optimization,
and certain interprocedural optimizations. Also, their system has a linear-
time cost for CheckPrivilege(), which must scan a potentially unbounded
number of frames to recover the security context. After this, with the
current Java 2.0 semantics, analyzing the security context could be poten-
tially as bad as O~N 2! in the number of targets because Sun allows the
target speaks-for graph to change over time. If Sun allowed caching of the
speaks-for graph (see Section 3.6.1), then a transitive closure could be
computed once, allowing the final security check to be linear in the size of
the security context, which will typically be quite small.

Our semantics costs O~1! per operation (with the same caveats about
checking privileges), since a security context has a bounded-size represen-
tation. Even so, in order to achieve competitive performance we must
minimize the constant-time overhead on each method call. We achieve this
by a combination of static optimizations and dynamic caching. By applying
static analysis to the full program before it begins running, we can optimize
away many of the computations of a new security state.

(1) SP S fun function f a1 an E function f a1 an s SP S E s
(2) SP S p g x1 xm s p g x1 xm saysowner p g s
(3) SP S E1 E2 s SP S E1 s SP S E2 s
(4) SP S BeginPrivilegeE s SP S E Ok()
(5) SP S CheckPrivilegeT s check T s

Fig. 3. “Callee-says” SPS conversion.

SAFKASI: A Security Mechanism for Language-Based Systems • 359

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

6.1 Static Optimizations

Suppose a function body g~. . . , s! contains a call f~. . . , s9!, where s and
s9 are the security-context arguments. The method g must compute s9 5
says~owner~g!, s! (in a caller-says convention) or s9 5 says~owner~ f !, s!
(in a callee-says convention). Under certain circumstances, we can let s9 5 s:

—In caller-says, we know that f must compute s99 5 says~owner~ f !, s9!
and then perform operations on s99; f cannot use s9 in any other way. If
owner~g! f owner~ f !, i.e., if the privileges of g are a superset of the
privileges of f, then

s99 5 says~owner~ f !, s9! [owner~ f ! says s9
5 says(owner~ f !, [owner~ f ! says

says(owner~g!, s)) owner~g! says s
5 says~owner~ f !, s! [owner~ f ! says s

by virtue of the fact that owner~g! f owner~ f !, allowing substitutions
based on the ABLP axioms. As a result, g can call f with the security
context s instead of s9, eliminating the computation of the says function
inside g.

—In callee-says, we know that s was constructed by the caller of g as s 5
says~owner~g!, t!. If owner~g! f owner~ f !, then

s9 5 says~owner~ f !, s! [owner~ f ! says s
5 says~owner~ f !, [owner~ f ! says

says~owner~g!, t!! owner~g! says t
5 says~owner~g!, t! [owner~g! says t
5 s

again using the ABLP axioms. As a result, g can call f with the security
context s instead of s9, eliminating the computation of the says function
inside g.

In practice, it is very common for one function to call another with the same
owner; in such cases, no says computation is necessary (since owner~ f !
f owner~ f !).

6.1.1 Criterion for Choosing Caller-Says vs. Callee-Says. Caller-says
requires calculation of the owner of the currently executing code, and can
be statically optimized if the caller is known to speak for the callee.
Callee-says requires fetching the owner of the callee, and can be statically
optimized if the callee speaks for the caller. Depending on how often these
different speaks-for relations can be statically determined, and how often
the owner of the callee can be determined statically, one convention or the
other may turn out to perform best in practice. We only implemented the
callee-says style.

360 • D. S. Wallach et al.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

6.1.2 Static Identification of Ownership in Class-Based Object-Oriented
Languages. In an object-oriented program, a program variable p declared
to be of class C may point to an object of any subclass of C. Therefore, the
method call p.f ~! may invoke any of several actual method bodies, depend-
ing upon how f is overridden in the subclasses of C.

A static analysis of the program may be able to narrow the set of possible
types that p may take on at the site of the call p.f ~!, and this in turn
narrows the set of possible method bodies (callees) that this call site may
invoke. Such an analysis can speed up a conventional object-oriented
program because dynamic method lookup is more expensive than a static
procedure call; if the set of callees can be narrowed to a singleton, then the
call p.f ~! can be implemented without runtime lookup. Other kinds of
program optimization—interprocedural dataflow analysis or function-call
inlining—also benefit from knowledge of which method body is called.

For security-passing style, it is not necessary to narrow the set of
possible method bodies to a singleton—it suffices to prove that all possible
method bodies for this call to f have a common owner. In fact, an even
weaker property will suffice: for caller-says, we require only that every
possible owner of f have (nonstrictly) fewer privileges than the owner of its
caller, g; for callee-says, we require that all owners of f have (nonstrictly)
more privileges than the owner of g.

There has been much work on static analyses of object types. Class
hierarchy analysis [Fernandez 1995; Dean et al. 1995] simply examines all
the subclasses of C to see if any of them overrides method f . If not, the
definition of f in class C (or, if C does not define f , the definition of f in an
ancestor class) must be the callee.

Figure 4 illustrates a simple flow-insensitive class hierarchy analysis.
Given a variable p of static type C, we analyze a call p.f ~! as follows. From
C, we walk up the class hierarchy tree to find the lowest (improper)
ancestor of C that implements or overrides f ~!, and put that ancestor into
the set P. Then we examine all (direct and indirect) subclasses of C, and
any of those that override f ~! are also put into P.

Fig. 4. Class hierarchy analysis. Variable p of static type C may point to an object of class C,
D, E, or H; the owner of p.f~! may be the owner of B, E, or H.

SAFKASI: A Security Mechanism for Language-Based Systems • 361

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

Information gained from dataflow analysis can prune the set of object
types that p may contain at the call site; this in turn prunes the set of
possible method bodies for f at this point, which in turn allows more
precise dataflow analysis. This iterative process is called interprocedural
class analysis and has been shown practical by at least two independent
sets of authors [Diwan et al. 1996; DeFouw et al. 1998].

6.1.3 System Speaks for Everyone. Some access-control matrices contain
a principal System that has access to every target. Even without flow
analysis or hierarchy analysis the compiler can use the rule System f C
to eliminate says computations when System code is calling other methods
(in the caller-says convention) or other code is calling System code (in
callee-says).

6.1.4 Leaf Procedures. Many functions do not use their security context
in any way. A leaf procedure is one that makes no other function call and
contains no CheckPrivilege operations; its security context argument is
statically dead at all times. A generalized leaf procedure is one that neither
calls CheckPrivilege nor any native methods, either directly or indirectly.
Static analysis of the dynamic call tree can conservatively identify many
generalized leaf procedures; these procedures do not require any security-
context argument or a says computation.

The generalized leaf procedure analysis works by recursively following
invoke bytecodes from every method (to a limited recursion depth) and is
repeated until a fixed point is reached. In practice, thousands of methods
can be analyzed this way in less than one CPU second.

This optimization is just a form of interprocedural dead-code elimination,
and can be done by a conventional object-oriented compiler (after SPS
conversion) because security-passing style has expressed all the says
computations in the underlying programming language. However, the
compiler needs to know that says has a declarative/functional semantics:
calls to says can be deleted if the result is dead, even though says might
have internal side-effects to lazily compute part of the transition graph.

Unfortunately, the invoke bytecode instructions are not sufficient for
the leaf analysis. If a getstatic or putstatic bytecode references a class
that has not yet been loaded, this will cause the class to be initialized,
creating an implicit call to the target class’s initialization method. Like-
wise, various runtime exceptions, such as indexing beyond an array’s
boundary or dereferencing a null pointer, will throw exceptions. To throw
an exception, an implicit call to the exception’s constructor would occur.

These implicit method invocations are not directly visible from Java
bytecode, making it difficult to preserve the semantics of the original Java
stack inspection system. Our implementation has the class initializers
implicitly enable their privileges when they begin running. While this
breaks compatibility with Sun’s implementation, it still preserves the Java
language semantics, which make no guarantees when class initializers are
invoked.

362 • D. S. Wallach et al.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

The implicit calls to create runtime exceptions are much simpler. By
observation, all of the exceptions that might implicitly be thrown make
only one native method call, to fill in their stack trace.

In both cases of implicit method invocation, our design breaks with
compatibility from Sun’s implementation, in favor of allowing more meth-
ods to be generalized leaf methods, and thus further reducing the overhead
of processing security contexts.

6.2 Dynamic Optimizations

There are a finite number of security contexts s, each corresponding to a
subset of the n principals in the system. For a simple browser-applet
system, n 5 2. Each context can be represented with a finite table of
labeled out-edges, so that says~o, s! is computed by looking up o in the
table for s.

Although n is bounded, it may not always be tiny (e.g., a stock market
with thousands of principals), so we lazily compute the tables and repre-
sent only those security contexts that are actually reached. Following an
untraversed edge requires (1) looking up a “new” subset in a global hash
table to see if this context has been reached before, (2a) using the context-
pointer from the table or (2b) creating a new context data structure, and (3)
installing the edge into the context that had lacked the edge.

From a security context s there be many consecutive says computations
by the same principal. In the representation of s we maintain a dynamic
one-word cache ~o, s9! indicating that the most recent says calculation on s
was says~o, s! 5 s9. This should speed up the common case.

6.3 Open vs. Closed World Assumptions

Our system, as we have described it, currently makes a fundamental
assumption that we can inspect all code before execution begins. This is
often called a “closed world assumption.” In systems where Java’s security
features are often used, such as Java applets or servlets, new code may
arrive at any time. Currently, all of our algorithms have been designed for
a closed world. In particular, our class hierarchy analysis runs once, up
front, and code is then generated based on properties true in the closed
world. Dean et al. [1995] discuss precisely this issue and propose a scheme
for incrementally updating the analysis.

Keep in mind that the performance numbers in Section 7 are based on a
closed world. Generally, an open world has strictly less information avail-
able from which to infer that an optimization is legal. This implies that, in
general, an implementation of security-passing style built for an open
world would have strictly worse performance than one built for a closed
world, although it may be possible for an open world system to closely
approach the performance of a closed world system. For example, in a Java
system supporting dynamic code recompilation, such as Sun’s HotSpot
[Griswold 1998], it would be possible for an SPS incremental analysis to

SAFKASI: A Security Mechanism for Language-Based Systems • 363

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

determine that certain classes, previously compiled using optimizations
that are now invalid, should now be recompiled. If code from a now-invalid
class was inlined in other compiled classes, the recompilation could prove
quite expensive. The cost of recompilation would likely dwarf the analysis
time (which currently takes less than a CPU second).

7. IMPLEMENTATION AND PERFORMANCE

We have implemented SPS conversion as a transformation on a collection of
Java class files. Our implementation was built using the JOIE library
(Java Object Instrumentation Environment) from Duke University [Cohen
et al. 1998]. This library presents a relatively high-level interface to parse
and edit Java class files. We refer to our implementation as SAFKASI, the
security architecture formerly known as stack inspection.

We have written approximately 1700 lines of Java code to do static
analysis, and 2300 lines to do bytecode rewriting (SPS conversion). Our
runtime support (implementing the says and CheckPrivilege functions) is
1900 lines. Our system loads, analyzes, and rewrites roughly 800 Java
classes in 100 seconds. We made no effort to tune the performance of the
rewriter itself; achieving an order of magnitude improvement in rewriting
speed should not be unreasonably difficult. JOIE, in particular, uses
primitive data structures to represent Java bytecodes. Code insertion in
JOIE has O~N 2! cost.

We have implemented flow-insensitive class hierarchy analysis to elimi-
nate says computations, and we remove says computations from both
simple and generalized leaf methods. Because we require the full program
for this analysis, we cannot presently support the dynamic loading features
of Java (see Section 6.1). Instead, we run the program from local disk with
our specialized classes.

Our system runs by modifying the class libraries of the NaturalBridge
BulletTrain Java compiler [NaturalBridge, LLC 1998]. BulletTrain uses a
traditional static compiler to produce native machine executables, in con-
trast to the dynamic just-in-time compilation used by other Java implemen-
tations. BulletTrain currently requires the whole program to be available
at compile-time. We chose to use BulletTrain because its authors offered us
invaluable assistance with their product. Also, because BulletTrain has an
aggressive code optimizer which uses whole-program analysis, we believe
performance numbers measured today with BulletTrain will represent
what other Java systems will achieve in the future.

7.1 Making SPS Work

Security-passing style has some very nice theoretical properties, but actu-
ally implementing it requires a number of difficult cases to be handled
properly.

7.1.1 Native Methods. Java programs can call native methods (functions
not written in Java) that might then call back to Java methods. We cannot

364 • D. S. Wallach et al.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

apply SPS conversion within the native methods. Instead, when calling
from Java to native, we store the security context s into a per-thread global
variable; when calling from native back to Java we fetch s as the security
context for the Java code. If we assume that all native method calls have
the owner, System, then since says~System, s! 5 s this is the correct
behavior.

We must also support up-calls, where native methods choose to call back
into Java methods. The standard mechanism for this, JNI (Java Native
Interface), requires the native code to specify a method’s complete signa-
ture, including the types of its arguments and return value. This means the
SPS-converter must generate stubs with the original signatures to receive
a JNI up-call. A stub method will retrieve the per-thread stored security
context and then invoke its SPS-converted sibling.

7.1.2 Reflection. Ideally, the security-passing transformation should
not be visible in any way to an application. The Java reflection API allows a
program to learn how many parameters each of its methods takes; since
SPS conversion introduces extra arguments, this is a problem that would
have to be fixed by modifying the implementation of reflection; we have not
yet done this.

7.1.3 Bootstrapping. In practice, bootstrapping proved to be the most
difficult aspect of implementing security-passing style. In the BulletTrain
system, the majority of the bootstrapping code is written in Java itself. This
makes the system extremely sensitive about the order in which classes
begin execution, and many classes which appear to be normal are handled
specially by the compiler. To address these concerns, an SPS-converted
program must bootstrap in three stages.

Classes involved in the very beginning of bootstrapping the runtime were
identified by hand and added to a list of classes that are not modified by the
SPS converter. Instead, any calls to these classes are treated the same as
calls to any native method, storing the security context into a per-thread
global variable.

In the second phase of bootstrapping, some SPS-converted classes begin
execution, but the SPS runtime itself is not yet initialized. Still, SPS-
converted classes require a nonnull instance of security context be passed
to them. To avoid this chicken-and-egg problem, a “dummy” security
context, later subclassed to implement the real security context, is created.

Finally, when “real” security contexts are available, then the applica-
tion’s main routine can be invoked with a proper security context, and
execution continues normally.

7.1.4 Consistency and Inheritance. Because many system classes must
not be SPS-converted, an issue arises when an SPS-converted class sub-
classes a nonconverted class or vice versa. It is obviously important to
maintain the consistency of the type system, and SPS-converting only a
subset of the classes can cause confusion.

SAFKASI: A Security Mechanism for Language-Based Systems • 365

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

To solve the problem, we adopted a rule that, if a class is SPS-converted,
then all subclasses of it must also be SPS-converted. Likewise, if an
interface is SPS-converted, then all classes that implement that interface
must also be SPS-converted.

This rule implies that, if a class cannot be SPS-converted, its superclass
may not be converted, either. Therefore, several core classes, including
java.lang.Object , execute unchanged. If a method in an SPS-converted
class wishes to call a method in a non-SPS-converted class, it treats the call
in the same way native methods are handled: the security context is saved,
and the method is invoked without the security context argument. In
practice, the number of times the security context is saved can be quite
significant. See Section 7.2.2 for details.

Several issues must still be resolved to make this work. One specific
problem was that java.lang.Thread , which must not be SPS-converted
(it is used very early in the system bootstrapping process), implements the
java.lang.Runnable interface, which we want to SPS-convert, as it is
used throughout the system after bootstrapping. This issue does not occur
anywhere else, so it was solved by adding a new method specifically to
java.lang.Thread during SPS conversion.

Another problem arises when an SPS-converted subclass inherits a
method from a non-SPS-converted superclass without overriding it. Nor-
mally, the callee in such cases is the superclass’ method. However, under
SPS conversion, the non-SPS-converted superclass does not have a method
with the appropriate SPS-converted signature, and neither does the sub-
class. We address this concern by generating a stub method in the subclass
to explicitly delegate to the superclass, when necessary.

7.1.5 Portability. As mentioned above, Java systems are relatively frag-
ile during the bootstrapping process. This requires a number of classes to
be handled specially. Running SPS-converted code in a different Java
environment would require assessing which classes need to be handled
specially. Also, sufficient access to the system bootstrapping process is
required such that the SPS system can be loaded as early as possible. Aside
from these issues, the SPS runtime should be straightforward to add to any
Java system.

7.1.6 Production vs. Prototype Implementations. Our prototype imple-
mentation makes a number of simplifying assumptions that would not be
acceptable in a production system. We make no attempt to support Java’s
reflection API. We likewise make no attempt to protect the security
contexts being passed through a method from the method itself. A carefully
crafted method would be able to manipulate the security context that is
inserted within it in our prototype.

Supporting reflection against SPS-converted code would be straightfor-
ward. It would simply require teaching the reflection calls to ignore any of
the added SPS methods or members and to pass along the security context.
Protecting the SPS system itself against attack would be trickier. Ideally,
we would invoke the Java bytecode verifier first, checking that the class is

366 • D. S. Wallach et al.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

self-consistent and well-behaved in its original state. After verification, we
could then safely perform the SPS conversion.

7.2 Performance

To accurately measure the performance of the original stack inspection
primitives as well as their SPS-converted equivalents, we created a series
of microbenchmarks that repeatedly enable a privilege, perform a number
of recursive method calls, and then check the privilege.

All benchmarks were measured on a PC with 384MB of RAM and a
450MHz Intel Pentium II running Windows NT Workstation 4.0 and a
development version of the NaturalBridge BulletTrain Java compiler simi-
lar to the released version 1.6.

7.2.1 Microbenchmarks. We used the measured runtimes of our micro-
benchmarks to calculate the cycle count of each stack inspection primitive
in each of three implementations: the null implementation (no security
passing, no security checking); the BulletTrain implementation of stack
inspection; and our security-passing style. Each microbenchmark was
executed 10 million times, allowing Java’s millisecond-accurate timer to
resolve single-cycle differences in execution time. Table I shows the results.
Figure 5 shows the variable cost of the CheckPrivilege() primitive when
using stack inspection compared to the constant-time cost of CheckPrivi-
lege() with security-passing style. The performance difference varies lin-
early from a factor of 35 to a factor of 88, depending on the stack depth.

7.2.2 Macrobenchmarks. Despite the success of security-passing style
on microbenchmarks, the per-method overhead is more costly when run-
ning real applications. Table II compares SPS-converted code, with its
cheap security checks, to normal code, performing expensive stack inspec-
tions for its security checks.

Four benchmark programs were used to test the performance of SPS-
converted code to normal code using traditional stack inspection. These
benchmarks are SAFKASI, RecRead, Javac, and Jess.

Table I. Measured Cost of SPS Primitives. The says function is shown as it would be
implemented in a leaf method (no security-context argument), in a nonleaf with identical

caller and callee owners, and (without static optimization) with and without a hit in the one-
word cache. BeginPrivilege includes the cost of invoking an interface method, as part of the

latest Java 2.0 semantics. Cycle counts were measured by timing microbenchmarks, then
dividing by the computer’s clock cycle.

No Security
(baseline) Stack Inspection

Security-Passing
Style

No says (leaf) 0 0 1–4 cycles
says ~o, s! 5 s (static opt.) 0 0 1–4
says ~o, s! (cache hit) 0 0 33
says ~o, s! (cache miss) 0 0 69
BeginPrivilege 24 cycles 2200 cycles 57

SAFKASI: A Security Mechanism for Language-Based Systems • 367

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

—SAFKASI: The program which implements the SPS conversion.
SAFKASI is benchmarked converting a large Java program (actually, it
is converting itself). It is reading in 1172 .class files, analyzing them,
and writing out 1172 new .class files.

—RecRead: A simple recursive program that, given a directory as input,
recursively iterates through all the subdirectories and reads the first
1024 bytes of every file. This program should be I/O bound, and should
also generate a large number of security checks relative to the amount of
CPU is consumes. RecRead was always run with a warm file cache.

—Javac: The compiler from Sun’s Java 2.0 distribution. For this bench-
mark, Javac is compiling Jess from scratch (all .class files are deleted
between benchmark runs).

—Jess: The Java Expert System Shell, version 5.0 [Friedman-Hill 1997].
For this benchmark, we asked jess to evaluate hard.clp , which is
included as an example in the Jess distribution.

Each benchmark configuration was executed 10 times and average re-
sults are presented here. We show performance numbers with the average
and standard deviation of their runtimes.

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18

T
im

e
(m

ic
ro

se
co

nd
s)

Average Stack Depth

Stack inspection
Security-passing style

Fig. 5. Cost of CheckPrivilege() microbenchmark. The times for the SPS check privilege calls
are approximately 0.5msec. This microbenchmark compares NaturalBridge’s internal stack
inspection system with our security-passing style implementation. The microbenchmark is an
implementation of the recursive solution to the Towers of Hanoi problem. On the benchmark
machine, 0.5msec is approximately 225 CPU cycles.

368 • D. S. Wallach et al.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

On these benchmarks, we found the cost of performing a security check to
be roughly the same, whether using SPS-converted code or traditional
stack inspection (with a small edge given SPS-converted code). However,
the general performance overhead of introducing SPS conversion to pro-
grams making no security checks varies from 15–30%. The cheaper security
checks with SPS only reduce this to a range of 15–19%.

Interestingly, the cost per security check, as measured on the bench-
marks, was not constant for SPS-converted code. The costs per check for
SPS and for stack inspection tended to mirror one other. If one was cheap,
the other would be cheap. In fact, the cost of a security check was orders of
magnitude higher than the cost of either primitive stack inspection or the
SPS check alone. This implies that other machinery in the SecurityMan-
ager is the performance bottleneck for security checks. The performance
overhead of the SecurityManager is particularly apparent in the RecRead
benchmark, where the security checks caused the benchmark to run below
one quarter of its original speed.

Table II. Runtime Performance of Benchmark Programs. Each benchmark program was
run in five configurations. The first was instrumented to capture profiling information. The

remaining four represented: the normal programming (running unmodified), the normal
program with a nonnull SecurityManager (and thus performing a stack inspection operation
on every security check), and the SPS-converted program with and without security checks.
These benchmarks allow us to measure the overhead of SPS conversion, both without and
with security checks being performed. Additionally, since our system counts the number of
security checks made, we can compute the average cost per security check, both with stack

inspection and with SPS.

No Security
(baseline)

Normal Stack
Inspection

SPS Conversion
(no checks)

SPS Conversion
(with checks)

SAFKASI
Runtime (s) 150.10 261.35 195.14 303.81
Stddev 0.91% 0.85% 0.45% 0.23%
SPS Overhead 30.01% 16.24%
Cost Per Check (ms) 3.95 3.85

RecRead
Runtime (s) 2.42 10.02 2.43 10.08
Stddev 1.35% 1.13% 1.33% 1.11%
SPS Overhead 0.30% 0.57%
Cost Per Check (ms) 0.74 0.75

Javac
Runtime (s) 7.74 8.43 9.40 10.02
Stddev 2.00% 2.66% 2.48% 1.73%
SPS Overhead 21.50% 18.86%
Cost Per Check (ms) 0.77 0.69

Jess
Runtime (s) 3.14 3.18 3.62 3.64
Stddev 2.00% 1.16% 2.60% 2.36%
SPS Overhead 15.31% 14.51%
Cost Per Check (ms) 3.48 1.89

SAFKASI: A Security Mechanism for Language-Based Systems • 369

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

Furthermore, both our security-passing system and the BulletTrain stack
inspection system are prototype implementations. Both “cheat” by return-
ing ProtectionDomain structures which grant permission for any request,
and neither has been heavily tuned for performance. Our benchmarks
imply that, while SPS conversion can slow down a program by up to 30%,
the other costs associated with making security checks can dominate the
system’s performance for programs performing significant security checks.

The culprit for the slowdown when enabling security checks is the Java
2.0 permission-checking system [Gong 1999]. Java 2.0 has defined an
extensible system where one permission can imply another, requiring a
significant amount of bookkeeping to track all the known permissions in
the system. For programs, such as RecRead, where these costs dominate
system performance, the performance difference caused by SPS conversion
is largely irrelevant. If the permission-checking system were heavily tuned
or redesigned, then the performance difference between SPS and stack
inspection would be more relevant. In particular, if programs like Jess,
where SPS security checks have half the cost of stack inspection, were to
perform more security checks, as done in RecRead, SPS could conceivably
result in a faster system than stack inspection. In the current system, as it
stands, the high runtime overhead of SPS conversion is never paid for by
the lower per-security-check costs.

7.2.3 Optimization Effectiveness. Section 6 describes a series of static
and dynamic optimizations that can be performed as part of the SPS
conversion process. Table III describes how well these optimizations
worked in practice. The generalized leaf procedure analysis combined with
static determination of a method callee’s principal allowed anywhere from
20–99.84% of all method call SPS conversions to be optimized away. In the
worst case, our dynamic optimizations rarely missed. We can conclude that
our optimizations were extremely effective.

The other result that appears in our analysis is the prevalence of the
need to store and retrieve the security context. When a callee cannot be
SPS-converted (see the discussion above on bootstrapping and native
methods), the security context must be saved. Likewise, if control flow
returns from one of these methods to a normal SPS-converted method, the
security context must be restored. Expressed as a percentage of the total
number of method calls performed, our benchmarks show a significant
number of StoreContext calls (ranging from 3–24% in normal circum-
stances to over 100% in a degenerate case that performs only I/O opera-
tions) and dramatically fewer GetContext calls (ranging from 0.5–8.5%).
This implies that the majority of times in which we store the context it is
never retrieved. Our system could be further optimized by identifying, by
hand, which of the non-SPS-converted methods never perform up-calls to
SPS-converted classes. With profiling enabled, our system counts the
number of times a security context is either saved or restored as a function
of the caller. This list can be used to identify hot spots for further analysis.

370 • D. S. Wallach et al.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

8. RELATED WORK

Security mechanisms can be generally broken down into those concerning
access controls (access to specific resources such as files and network
connections), resource limits (CPU and memory use, network bandwidth,
and other resources where individual use is cheap, but aggregate use over
time is costly), and information flow.

Language-based mechanisms have been used for security purposes be-
fore, perhaps as early as the Burroughs B5000 series computers [Bur-
roughs Corporation 1969]. Many more recent systems, including Smalltalk
[Goldberg and Robson 1989], Pilot [Redell et al. 1980], Cedar [Swinehart et
al. 1986], Lisp Machines [Bromley 1986], and Oberon [Wirth and Gut-
knecht 1992] have taken advantage of language-based mechanisms to
provide access control services. More recent systems, such as MzScheme
[Flatt et al. 1999] and J-Kernel [Hawblitzel et al. 1998; Spoonhower et al.
1998], use name-space management or capability-style semantics for access
control.

A number of projects have addressed the issue of resource management
within language runtimes. Back et al. [2000], Back and Hsieh [1999], and
van Doorn [2000] discuss developing an operating-system-like environment
within Java. They discuss implementing virtual kernel-user boundary
within the Java API and the JVM. Likewise, JRes [Czajkowski and von
Eicken 1998] and Bernadat et al. [1998] supports controls on memory
usage.

Some systems, such as PLAN [Hicks et al. 1998], restrict the language to
guarantee that programs will terminate or otherwise behave in some

Table III. Runtime Statistics for Benchmark Programs. This table represents the
effectiveness of static optimization for SPS-converted programs. Leaf% represents the

number of method calls, at runtime, where the system had statically determined that the
callee was a generalized leaf procedure, and therefore needed no additional security context

argument. StaticOpt% represents the percentage of method calls where the system could
statically determine the callee’s principal and could thus avoid changing the security

context. DynHit% represents the percentage of method calls where the system needed to
compute a change to the security context but the result had been previously cached. In all
these benchmarks, the sum of these percentages is virtually 100%. Furthermore, we also
measured the number of times our system chose to save or restore the security context
(GetContext% and StoreContext%). Normally, this is done before or following a call to a
native method or any other method that cannot be rewritten. These measurements are
presented as percentages relative to the total number of method calls performed by the
benchmark program. So, when RecRead shows a StoreContext% of 111.62%, this implies

that, on average, each method body made 1.1 calls to store the SPS context prior to invoking
a native or otherwise unrewritable method.

SAFKASI RecRead Javac Jess

Leaf% 10.90% 23.68% 28.55% 37.30%
StaticOpt% 9.89% 76.16% 28.89% 38.00%
DynHit% 79.21% 0.16% 42.56% 24.71%

GetContext% 2.38% 8.46% 5.81% 0.50%
StoreContext% 24.83% 111.62% 15.97% 3.18%

SAFKASI: A Security Mechanism for Language-Based Systems • 371

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

fashion. Similar restrictions can also be enforced with proof-carrying code
[Necula and Lee 1996; Necula and Lee 1997].

JFlow [Meyers 1999] enforces information flow policies against Java
programs.

The system presented here, SAFKASI, is built using Java bytecode
rewriting. Bytecode rewriting is a very general technique that has been
used in a number of systems. J-Kernel, JRes, Naccio [Evans and Twyman
1999], and Kimera [Sirer et al. 1999] all use Java bytecode rewriting as
part of their security architecture.

9. CONCLUSIONS

Stack inspection has proven to be a useful technique for managing the
security requirements of mobile code systems such as Java and has been
adopted by all the major Java software vendors. We present a formal model
of stack inspection based on a belief logic. We present the design and
implementation of security-passing style, and a proof of its equivalence to
stack inspection. We analyze the performance of our implementation. We
discuss a number of optimizations for security-passing style, both static
optimizations based on a class hierarchy analysis, and dynamic optimiza-
tions based on caching of previous results.

While the performance of our prototype is not as good as the original
stack inspection system, we now have a powerful and theoretically sound
system with equivalent semantics to stack inspection, yet which may be
more easily adapted to other languages beyond Java. Security-passing style
addresses concerns that mobile code systems must require ad hoc changes
to language runtimes or must rely on traditional operating systems mech-
anisms. As mobile code is increasingly deployed, whether in the form of
active networks, shared virtual realities, or programmed stock trading, the
importance of a sound security architecture, such as stack inspection,
increases likewise.

APPENDIX

A. ACCESS CONTROL LOGIC DETAILS

In order to model stack inspection, we chose to adopt a subset of the belief
logic from Abadi et al. [1993] (hereafter, ABLP logic).

A.1 ABLP Grammar

This section presents a grammar for valid ABLP expressions. Note that,
while this grammar is not completely unambiguous, the axioms that
operate on ABLP expressions are unambiguous.

There are two fundamental types in ABLP: statements and principals. A
statement could be an atomic statement such as “the sky is blue.” It could
also be a compound statement such as “Bob says the sky is blue” or “Alice
speaks for Bob,” as indicated with the f symbol. A statement may also be
the conjunction of several independent statements, as indicated with the

372 • D. S. Wallach et al.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

∧ symbol. Or, a statement may imply another statement, as indicated with
the . symbol.

Statement 3 AtomicStatement
Statement 3 Statement ∧ Statement
Statement 3 Statement . Statement
Statement 3 Principal says Statement
Statement 3 Principal f Principal

A principal can be an atomic principal such as “Alice” or “Bob.” It may also
be a compound principal such as “Alice quoting Bob,” as indicated with the
| symbol or a conjunction of principals, as indicated with the ∧ symbol.

Principal 3 AtomicPrincipal
Principal 3 Principal | Principal
Principal 3 Principal ∧ Principal

To avoid ambiguous statements or at least make statements more legible,
parentheses are also acceptable in all the obvious places.

Principal 3 (Principal)
Statement 3 (Statement)

Thus, it is perfectly reasonable to make a statement such as

~~Alice ∧ Bob! says ~Charlie f ~Alice ∧ Bob!!! ∧

~CharlieAlice says X! ∧

~~Alice says X! . X!

where the first part is a form of delegation (Alice and Bob delegating their
privileges to Charlie); the second part is an assertion that “Charlie quoting
Alice” wants to do X (i.e., Charlie is claiming that Alice wants to do X); and
the third part is an access control rule stating that when Alice says she
wants to do X, we will believe her.

A.2 Axioms

Here is a list of the subset of axioms in ABLP logic used in this article. We
omit axioms for delegation, roles, and exceptions because they are not
necessary to discuss stack inspection.

A.2.1 Axioms about Statements.

If s is an instance of a theorem of propositional logic

then s is true in ABLP. (9)

If s and s . s9 then s9. (10)

SAFKASI: A Security Mechanism for Language-Based Systems • 373

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

~A says s ∧ A says ~s . s9!! . A says s9. (11)

If s then A says s for every principal A. (12)

A.2.2 Axioms about Principals.

~A ∧ B! says s [~A says s! ∧ ~B says s! (13)

~AB! says s [A says B says s (14)

~A 5 B! . ~A says s [B says s! (15)

~A~BC!! [~~AB!C! (16)

~A~B ∧ C!! [~AB! ∧ ~AC! (17)

~A f B! [~A 5 A ∧ B! (18)

~A says ~B f A!! . ~B f A! (19)

So, given the the following statement:

~~Alice ∧ Bob! says Charlie f ~Alice ∧ Bob!! ∧

~CharlieAlice says X! ∧

~~Alice says X! . X!

we might try to prove X.

Charlie f ~Alice ∧ Bob! by axiom 19
~Charlie ∧ Alice ∧ Bob!Alice says X by axiom 18
~CharlieAlice says X! ∧

~AliceAlice says X! ∧ ~BobAlice says X! by axiom 13
AliceAlice says X by axiom 9
Alice says Alice says X by axiom 14
Alice says X by axiom 11
X by axiom 11

Now, in general, not all ABLP proofs are this easy. It is possible to
encode problems in ABLP that are equivalent to the halting problem.
However, by carefully choosing a subset of ABLP, we can not only guaran-
tee that proofs are decidable, but we can also make efficient decision
procedures for them. Section 3 presents the subset of ABLP that we use to
model Java’s stack inspection.

A.3 Applying ABLP

With an understanding of how ABLP logic works, we can explain how it can
be used to model actual systems. A great amount of detail on this is

374 • D. S. Wallach et al.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

available in Lampson et al. [1992]. ABLP can be used to model the flow of
control through a single system, from user to keyboard to motherboard to
device driver to operating system to user process. It can also be used to
model information passing across a network to the same level of detail. The
key is quoting. When an application receives a keystroke, it might want to
verify that the keystroke, in fact, came from the user. In the model, such an
application would be required to validate the following:

~Kernel?DeviceDriver?Keyboard says KeyPressed~‘g’!! . KeyPressed~‘g’!

In order to do this, it must believe that each layer truthfully speaks for the
layer below it:

Kernel f DeviceDriver

DeviceDriver f Keyboard

~Keyboard says KeyPressed~x!! . KeyPressed~x!

Given the above beliefs and the axioms of ABLP logic, an application may
safely believe in the authenticity of its keystrokes.

If we wish to add a network window server (such as X) to this model, we
must prove that the window server speaks for the keyboard. Such a proof
would require modeling the event dispatch mechanism inside the server. If
the window server supported features like synthetic key events (where an
application may simulate keystroke events to drive another application),
this would also need to be taken into account in the model. As the model’s
complexity grows, our certainty of keystroke authenticity is dependent on
our ability to make proofs as above.

ABLP can be applied to all kinds of authentication problems. A related
logic, BAN logic [Burrows et al. 1990], has been applied to the underlying
cryptographic protocols as well.

ACKNOWLEDGMENTS

We sincerely thank Kenneth Zadeck, David Chase, and Roger Hoover of
NaturalBridge L.L.C. for their invaluable assistance in debugging our
SAFKASI port to their Java system. We also thank Martín Abadi, Dirk
Balfanz, Drew Dean, and the anonymous referees who have helped shape
this article into its current form.

REFERENCES

ABADI, M., BURROWS, M., LAMPSON, B., AND PLOTKIN, G. 1993. A calculus for access control in
distributed systems. ACM Trans. Program. Lang. Syst. 15, 4 (Sept.), 706–734.

BACK, G. AND HSIEH, W. 1999. Drawing the red line in Java. In Proceedings of the 7th IEEE
Workshop on Hot Topics in Operating Systems (Rio Rico, AZ, Mar.). IEEE Computer Society
Press, Los Alamitos, CA. http://www.cs.utah.edu/flux/papers/redline-hotos7.ps.

SAFKASI: A Security Mechanism for Language-Based Systems • 375

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

BACK, G., TULLMANN, P., STOLLER, L., HSIEH, W. C., AND LEPREAU, J. 2000. Techniques for the
design of Java operating system. In Proceedings of the 2000 Usenix Annual Technical
Conference (San Diego, CA, June).

BERNADAT, P., LAMBRIGHT, D., AND TRAVOSTINO, F. 1998. Towards a resource-safe Java for
service guarantees in uncooperative environments. In Proceedings of the IEEE Workshop on
Programming Languages for Real-Time Industrial Applications (Madrid, Spain, Dec.).

BROMLEY, H. 1986. Lisp Lore: A Guide to Programming the Lisp Machine. Kluwer Academic
Publishers, Hingham, MA.

BURROUGHS CORP. 1969. Burroughs B6500 Information processing systems reference manual.
BURROWS, M., ABADI, M., AND NEEDHAM, R. 1990. A logic of authentication. ACM Trans.

Comput. Syst. 8, 1 (Feb.), 18–36.
COHEN, G., CHASE, J., AND KAMINSKY, D. 1998. Automatic program transformation with

JOIE. In Proceedings of the 23rd on USENIX Annual Conference (New Orleans, Louisiana,
June). USENIX Assoc., Berkeley, CA, 167–178.

CZAJKOWSKI, G. AND VON EICKEN, T. 1998. JRes: A resource accounting interface for Java. In
Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA ’98, Vancouver, B. C., Canada, Oct. 18–12), B.
Freeman-Benson and C. Chambers, Chairs. ACM Press, New York, NY, 21–35.

DEAN, J., GROVE, D., AND CHAMBERS, C. 1995. Optimization of object-oriented programs using
static class hierarchy analysis. In Proceedings of the Ninth European Conference on
Object-Oriented Programming (ECOOP ’95, Aarhus, Denmark, Aug.). Springer-Verlag, New
York, NY.

DEFOUW, G., GROVE, D., AND CHAMBERS, C. 1998. Fast interprocedural class analysis. In
Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’98, San Diego, CA, Jan. 19–21), D. B. MacQueen and L. Cardelli,
Chairs. ACM Press, New York, NY, 222–236.

DIWAN, A., MOSS, J. E. B., AND MCKINLEY, K. S. 1996. Simple and effective analysis of
statically typed object-oriented programs. In Proceedings of the Eleventh Annual Conference
on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA ’96, San
Jose, CA, Oct. 6–10), L. Anderson and J. Coplien, Chairs. ACM Press, New York, NY,
292–305.

EVANS, D. AND TWYMAN, A. 1999. Flexible policy-directed code safety. In Proceedings of the
1999 IEEE Symposium on Security and Privacy (Oakland, California, May). 32–45.

FERNANDEZ, M. 1995. Simple and effective link-time optimization of Modula-3 programs. In
Proceedings of the ACM SIGPLAN ’95 Conference on Program Language Design and
Implementation. ACM Press, New York, NY, 103–115.

FLATT, M., FINDLER, R. B., KRISHNAMURTHY, S., AND FELLEISEN, M. 1999. Programming
languages as operating systems: (or revenge of the son of the Lisp machine). In Proceedings
of the 1999 ACM International Conference on Functional Programming (ICFP ’99, Paris,
France, Sept). http://www.cs.rice.edu/CS/PLT/Publications/icfp99-ffkf.ps.gz.

FRIEDMAN-HILL, E. J. 1997. Jess: The Java Expert System Shell. Sandia National
Laboratories, Livermore, CA. http://herzberg1.ca.sandia.gov/jess/

GOLDBERG, A. AND ROBSON, D. 1989. Smalltalk-80: The Language. Addison-Wesley, Reading,
MA.

GONG, L. 1999. Inside Java 2 Platform Security: Architecture, API Design, and Implementation.
Addison-Wesley, Reading, MA.

GONG, L. AND SCHEMERS, R. 1998. Implementing protection domains in the Java Development
Kit 1.2. In Proceedings of the 1998 Internet Society Symposium on Network and Distributed
System Security (San Diego, CA, Mar.).

GOSLING, J., JOY, B., AND STEELE, G. 1996. The Java Language Specification. Addison-Wesley,
Reading, MA.

GRISWOLD, D. 1998. The Java HotSpot Virtual Machine Architecture. Sun Microsystems
Laboratories. http://java.sun.com/products/hotspot/whitepaper.html

HARDY, N. 1988. The confused deputy. ACM SIGOPS Oper. Syst. Rev. 22, 4 (Oct.),
36–38. http://www.cis.upenn.edu/ KeyKOS/ConfusedDeputy.html

376 • D. S. Wallach et al.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

HAWBLITZEL, C., CHANG, C.-C., CZAJKOWSKI, G., HU, D., AND VON EICKEN, T. 1998.
Implementing multiple protection domains in Java. In Proceedings of the Annual Technical
Conference on USENIX (New Orleans, LA, June). USENIX Assoc., Berkeley, CA.

HENNESSY, J. L. 1982. Symbolic debugging of optimized code. ACM Trans. Program. Lang.
Syst. 4, 4 (Oct.), 323–344.

HICKS, M., KAKKAR, P., MOORE, J. T., GUNTER, C. A., AND NETTLES, S. 1998. PLAN: A packet
language for active networks. In Proceedings of the 3rd ACM SIGPLAN International
Conference on Functional Programming Languages (ICFP ’98, Baltimore, MD, Sept. 27–29),
M. Felleisen, P. Hudak, and C. Queinnec, Chairs. ACM Press, New York, NY,
86–93. http://www.cis.upenn.edu/ switchware/papers/plan.ps

LAMPSON, B. 1974. Protection. In Proceedings of the 5th Princeton Symposium on Information
Sciences and Systems (Princeton, NJ, Mar.). 437–443.

LAMPSON, B., ABADI, M., BURROWS, M., AND WOBBER, E. 1992. Authentication in distributed
systems: Theory and practice. ACM Trans. Comput. Syst. 10, 4 (Nov.), 265–310.

LINDHOLM, T. AND YELLIN, F. 1997. The Java Virtual Machine Specification. Addison-Wesley,
Reading, MA.

MYERS, A. C. 1999. JFlow: Practical mostly-static information flow control. In Proceedings of
the 26th ACM Symposium on Principles of Programming Languages (POPL, San Antonio,
TX, Jan.). 228–241.

MICROSOFT CORPORATION. 1997. Microsoft Security Management Architecture White Paper.
Microsoft Corp., Redmond, WA. http://www.microsoft.com/ie/security/ie4security.htm.

NATURALBRIDGE, LLC. 1998. BulletTrain Java Compiler. http://www.naturalbridge.com.
NECULA, G. C. AND LEE, P. 1996. Safe kernel extensions without run-time checking. In

Proceedings of the 2nd USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI ’96, Seattle, WA, Oct. 28–31), K. Petersen and W. Zwaenepoel, Chairs. ACM
Press, New York, NY, 229–243.

NECULA, G. C. AND LEE, P. 1997. Safe, untrusted agents using proof-carrying code. In Mobile
Agent Security. Springer-Verlag, New York, NY.

NETSCAPE CORP. 1997. Introduction to the capabilities classes. Netscape Corp.
http://developer.netscape.com/library/documentation/signedobj/capabilities/index.html.

REDELL, D., DALAL, Y., HORSLEY, T., LAUER, H., LYNCH, W., MCJONES, P., MURRAY, H., AND

PURCELL, S. C. 1980. Pilot: An operating system for a personal computer. Commun. ACM
23, 2 (Apr.), 81–92.

ROSKIND, J. 1996. Evolving the security model for Java from Navigator 2.x to Navigator 3.x.
Netscape Corp. http://developer.netscape.com/library/technote/security/sectn1.html.

SALTZER, J. H. AND SCHROEDER, M. D. 1975. The protection of information in computer
systems. In Proceedings of the IEEE. IEEE Press, Piscataway, NJ, 1278–1308.

SAULPAUGH, T., CLEMENTS, T., AND MIRHO, C. A. 1999. Inside the JavaOS Operating
System. Addison-Wesley, Reading, MA.

SIRER, E. G., GRIMM, R., GREGORY, A. J., AND BERSHAD, B. N. 1999. Design and implementa-
tion of a distributed virtual machine for networked computers. In Proceedings of the 17th
ACM Symposium on Operating System Principles (Kiawah Island Resort, SC, Dec.). ACM
Press, New York, NY, 202–216.

SPOONHOWER, D., CZAJKOWSKI, G., HAWBLITZEL, C., CHANG, C.-C., HU, D., AND VON EICKEN, T.
1998. Design and evaluation of an extensible web & telephony server based on the
J-Kernel. 98-1715 (Nov.). Department of Computer Science, Cornell University, Ithaca,
NY. http://www2.cs.cornell.edu/slk/papers/tr98-1715.pdf

STEELE, G. L. 1978. Rabbit: A compiler for scheme. AI-TR-474. MIT Press, Cambridge, MA.
SWINEHART, D. C., ZELLWEGER, P. T., BEACH, R. J., AND HAGMANN, R. B. 1986. A structural

view of the Cedar programming environment. ACM Trans. Program. Lang. Syst. 8, 4 (Oct.),
419–490.

TOLMACH, A. P. AND APPEL, A. W. 1990. Debugging standard ML without reverse
engineering. In Proceedings of the 1990 ACM Symposium on LISP and Functional
Programming (Nice, France, June 27–29), G. Kahn, Chair. ACM Press, New York, NY,
1–12.

SAFKASI: A Security Mechanism for Language-Based Systems • 377

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

VAN DOORN, L. 2000. A secure Java virtual machine. In Proceedings of the Ninth USENIX
Security Symposium (Denver, CO, Aug.).

WALLACH, D. S. AND FELTEN, E. W. 1998. Understanding Java stack introspection. In
Proceedings of the 1998 IEEE Symposium on Security and Privacy (Oakland, CA,
May). IEEE Computer Society Press, Los Alamitos, CA, 52–63.

WALLACH, D. S., BALFANZ, D., DEAN, D., AND FELTEN, E. W. 1997. Extensible security
architectures for Java. In Proceedings of the Sixteenth ACM Symposium on Operating
System Principles (Saint-Malo, France, Oct.). 116–128.

WILLE, C. 2000. Presenting C#. SAMS, Carmel, IN.
WIRTH, N. AND GUTKNECHT, J. 1992. Project Oberon: the design of an operating system and

compiler. ACM Press/Addison-Wesley Publ. Co., New York, NY.
WOBBER, E., ABADI, M., BURROWS, M., AND LAMPSON, B. 1994. Authentication in the Taos

operating system. ACM Trans. Comput. Syst. 12, 1 (Feb.), 3–32.

Accepted: September 2000

378 • D. S. Wallach et al.

ACM Transactions on Software Engineering and Methodology, Vol. 9, No. 4, October 2000.

