
Programming D. Gries
Languages Editor

Protection in
Programming
Languages
James H. Morris Jr.
University of California

Linguistic mechanisms which can be used to protect
one subprogram from another's malfunctioning are
described. Function-producing functions and various
type-tagging schemes are considered. An attempt is
made to distinguish between access limitation and
authentication.

Key Words and Phrases: protection, types,
environments, trademarks, seals, access keys, access
control, authentication, secrecy

CR Categories: 4.2, 4.3

Copyright © 1973, Association lbr Computing Machinery, Inc.
General permission to republish, but not for profit, all or part

of this material is granted, provided that reference is made to this
publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Com-
puting Machinery.

Author's address: Department of Computer Science, University
of California, Berkeley, CA 94720.

15

1. Introduction

The ability of a programming language or system to
protect and isolate program modules is vital. As a set
of coexisting and perhaps cooperating programs grows,
the proper functioning of any particular program should
not be endangered.

This paper explores a few protection mechanisms as
they exist or might exist in a programming language.
In doing so we hope to illuminate certain devices
found in operating systems (e.g. capabilities and access
control) as well as programming languages (e.g. func-
tion-producing functions, programmer-defined data
types).

Who is to be protected from what? Although the
need for protection is usually inspired by situations in-
volving hostility (e.g. competing government agencies
sharing a computer system), experienced programmers
will attest that hostility is not a necessary precondition
for catastrophic interference between programs. An un-
debugged program, coexisting with other programs,
might as well be regarded as having been written by a
malicious enemy--even if all the programs have the same
author! The protection problem to be dealt with here is:
how does one allow programs to cooperate and com-
municate and yet minimize the confusion attendant upon
a program's malfunctioning? There are other kinds of
protection problems of a less microscopic nature (e.g.
proprietary programs) that will not be dealt with here.

We offer the following as a desideratum for a
programming system: A programmer should be able to
prove that his programs have various properties and do
not malfunction, solely on the basis of what he can see
from his private bailiwick. To make "his bailiwick"
more precise we simply equate it with a single textual
region of a larger program. While we realize that logis-
tical problems prevent a large system of programs from

Communications January 1973
of Volume 16
the ACM Number 1

existing as one single program, we accept this artific-
iality for the sake of precision. Thus we are only in-
terested in those properties of a subprogram which are
invariant over all the possible program texts into which
the subprogram might be inserted. For example, the
distinction (in ALGOL 60) between an own variable and
one declared in the outermost block is vital given this
criterion; a programmer can depend upon the privacy
of his access to the former, but not the latter.

2. Procedures as Objects
The procedure or subroutine has always been a con-

venient device for one programmer to make his work
available to others. The essence of its power is that the
user of a procedure need not be concerned with the de-
tails of its operation, only the effect. If we make this
ignorance mandatory by arranging that users of pro-
cedures cannot discover anything about them except
by executing them, we have the basis for a very flexible
protection mechanism.

Execute-only procedures are, of course, the norm;
both FORTRAN and ALGOL 60 enforce that restriction.
However, in order to exploit this device to its fullest
extent it is useful to make procedures full-fledged objects
in the sense that they can be passed as parameters or
values of other procedures and be assigned to variables.
Then, to make a particular object accessible to someone
in a restricted way (e.g. read only), we make the object
local to a procedure and pass the procedure to them in
its stead. The first language to allow procedures to be
passed about was LISP, with its FUNARG lists [6]. Later
languages, I S W I M [5], PAL [2], and GEDANKEN [7], also
have such procedures and have the execute-only re-
striction (LISP does not). Our example programs will be
written in GEDANKEN as its definition is probably the
most readily accessible to the reader. An appendix offers
a brief description of GEDANKEN in terms of ALGOL 60.

Example 1. The following GEDANKEN expression
yields a procedure which will return as value the number
of times it has been called. The reference Count is in-
accessible to users of the procedure.

[Count is Ref(O) ;
X(){Count := Count+ 1;

Val(Count) }] []

3. Local Objects

We wish to make precise the notion of an object
being local to a particular part of a program; i.e. its
being inaccessible to other parts. For example the ad-
dress of a variable in a FORTRAN program is local to a
subroutine if it does not appear in any COMMON dec-
laration or as an actual parameter to a subroutine
call. In general we define it as follows: An object is
local to a textual region R if the only expressions that
will ever have it as a value are part of R.

For example, the expression Ref(0) in Example 1 is
local to the whole expression. Obviously, an object can-
not be local unless it is created by a unique object
generator like Ref, or is defined in terms of such ob-
jects. For example, neither the number 3 nor the
function (kXX*3) can be local to any region.

The advantage of an object's being local is that one
can enumerate all the situations in which it plays a role
by looking at a single (hopefully small) region of the
program.

Naturally, there can be no complete set of rules for
proving that an object is local since we can easily con-
struct a subprogram with a subexpression whose value
is local iff some other, arbitrary, computat ion halts.
However, consider the following general approach:

Consider a region R and some expression in R known
to produce a unique object every time it is evaluated
(e.g. Ref(O) is such an expression). There are three
ways in which a value Vofthis expression could "escape"
from R: It can be passed as a parameter to a procedure
not defined within R, it can be returned as a result of a
procedure called from outside R, or it can be assigned to
a reference which is not local to R. Therefore, to prove
that V is local to R we must check each procedure call,
procedure return, and assignment which might involve
V and show that it does not escape.

4. Memory Protection

If a memory reference is local to R then only state-
ments in R can assign to it or take its contents. However,
any imaginable kind of restricted access (e.g. read-only,
write-only, increment-only) can be allowed programs
outside R by providing them with an appropriate pro-
cedure defined inside R.

Example 2. Suppose a programmer wishes to pro-
vide some table-maintaining operations to the general
community. He writes the program shown in Figure 1
and publishes the following set of instructions to users :

To acquire a set of table-maintaining procedures, call
the (publicly available) procedure Createtable with the
maximum number of table entries you wish to allow.
It will return a three-tuple of procedures

Item, lndex, Save

ltem(i) will return the ith smallest item in the table.
Index(x) will return the index of x in the table (i.e.
1tern (Index (x)) = x) if it is there, otherwise 0. Save (x)
will put x into the table if it is not already there. Ini-
tially the table is empty. So much for the external
specification.

Inspection of the program reveals that the references
created for Table and Count, as well as the procedures
Locate and Move are local to the procedure body of
Createtable. This implies that every assignment to the
references is performed by statements inside the region
and every call of the procedures is also from the region.

16 Communica t ions January 1973
of Volume 16
the AC M Number 1

Fig. 1. Table maintaining routines.

Creatable is ~N
[Table is Vector(1 ,N,M Ref(O)) ;
Count is Ref(O) ;
Locate is XX[J is Ref(Count) ;

Loop: if J= 0 then 0 else

//The table
//Number of entries
//Returns index of X if present,
//Otherwise negative of next
smallest

if Table(J) < X then -- J else
if Table(J) = X then J else
{J := J - l ; go toLoop}];

Move is X(X,I) [if Count = N then go to Error* else
//Inserts X after

{ J is Ref(Count) ; //Position 1
Mloop: if J = l then Table(J+l) := X else

(Table(J+ l) := Table(J);
J : = J--l;gotoM/oop);
Count : = Count+ 1 }];

Item is M* if 1 < 1 < Count then Val(Table(1))*
else go to Error*;

Index is XX[*I is Locate(X)
if I > 0 then I else 0"];

Save is hX[*I is Locate(X) ;
if 1 > 0 then NIL

else Move (X, -- 1) *];
Item, Index, Save*]

Fig. 2. Interval manipulating routines.

[Createint is X(X, Y) if X<_ Y then X, Y else Y,X;
Min is XZ Z(1) ;
Max is XZ Z(2) ;
Sum is X(X,Y) (X(1) -+- Y(1)),(X(2) -q- Y(2));
Createint, Min, Max, Sum]

Consider all the places marked with an asterisk (*) in
Figure 1. At each we make the assertion

Table(i) , . . . ,Table(Count)

is in ascending order. Then we may prove, using what-
ever degree of rigor deemed necessary, that if the asser-
tion is true at each relevant entrance to this textual
region (i.e. the entries to I tem, Index, and Save) , then
it must be true at each exit (i.e. the exits of l t em, lndex ,

Save, and Createtable and the Error exits). Now, because
Table and C o u n t - - t h e only objects the assertion deals
with--are local, we may infer that the assertion really
is true upon each entry to I tem, lndex , and Save. []

FORTRAN local variables and ALGOL OWn variables
offer limited versions of memory protection. Indeed,
the programs in Figure 1 could be written as a FORTRAN
subroutine with multiple entry points if it weren't for
the fact that we may call Createtable many times.

5. T y p e P r o t e c t i o n

One of the fundamental ways in which one pro-
grammer provides services to another is to implement a
representation of a new kind of object. For example, a
system programmer may represent files with disk-tracks
and tape records, or a compiler writer may represent
complex numbers with pairs of reals. Generally speak-
ing, the first programmer writes some subroutines which
create, alter, and otherwise deal with the new kind of
objects. These new objects are represented by some older
kinds.

Suppose we wish to provide a new data type, in-
tervals, to the general public. Among the primitive
routines to be provided are Createint (x , y) which creates
an interval from x and y, M a x and M i n which yield the
appropriate endpoints, and S u m which adds two inter-
vals to produce a new one. We might implement them
as shown in Figure 2.

Now the question arises: how is a user of these primi-
tives to regard the objects that Createint produces--
as intervals or as common, ordinary pairs, which they
obviously are? Most people would agree that he should
do the former and would regard as a type violation any-
thing assuming the latter. Specifically, there are three
kinds of mishap which we might regard as type viola-
tions--i.e, use of an object in a way not intended by its
constructor.
1. Alteration. An object that involves references may
be changed without use of the primitive functions pro-
vided for the purpose.
2. Discovery. The properties of an object might be
explored without using the primitive functions; e.g. we
may select a component of a pair representing an
interval.
3. Impersonat ion. An object, not intended to represent
anything in particular, may be presented to a primitive
function expecting an object representing something

17 Communications January 1973
of Volume 16
the ACM Number 1

quite specific; e.g. we might call Max with a pair not
constructed by Createint or Sum.

There are two parties involved in such mishaps: the
programmer of the primitive procedures and the user
(misuser, actually) of them. Let us examine the impact
upon them.

I f an alteration or impersonation occurs, the primi-
tive functions might malfunction in a drastic way which
would embarrass their programmer, e.g. cause a mys-
terious run-time error or never halt. For example, if
Max were called with something that was not even a
pair, errors would result. While good programming
practice might dictate that a programmer make no as-
sumptions about input parameters and always perform
checks, doing so can be difficult. Suppose, for example,
that we chose to represent sets with sorted vectors. If
the programmer were required to check each set-
representing parameter for well-formedness (i.e. being
sorted), there would be little point in using a fast search-
ing method such as binary search to locate an item. For
to check that a vector is sorted, we must examine each
element and therefore might as well do the locating at
that time.

From the programmer ' s point of view, discovery
presents no direct threat. I f in using programs other
than his own, he simply looks at the objects being used
as representing something, the proper functioning of
his programs is not impaired. There are more subtle con-
siderations, but we won' t deal with them here.

Now let us consider the user of the primitive func-
tions. First, if his violation of the type rules is genuinely
a mistake, he wishes to be informed of it as soon as
possible. I f he really thinks of the objects he deals with
as intervals, there is no reason why he would wish a type
violation to occur. However, if he is aware of the repre-
sentation activity, he may wish to violate the type re-
strictions for efficiency's sake. Also, a programmer may
discover entirely unplanned for, yet quite useful, ap-
plications of the primitive operations; e.g. using Sum
to add pairs representing complex numbers. While
recognizing that such activity is not entirely reprehen-
sible, let us now consider devices for preventing it.
These devices are basically generalizations of the type
tags familiar to any implementor of a language with
dynamic data types. Here they are being made available
to the general user. Our tagging operations are more
general (and expensive) in two respects. First, they are
"cascadable": a tagged item may be retagged. This
feature reflects our belief that representation can be a
multilevel affair. Second, they are completely dynamic

1 The use of a function-producing-function here is not essen-
tial; Createseal could return a pair Iock~, key, where Iock~ and key~
are objects of special types usable by the generally available func-
tions Seal and Unseal, respectively.

in the sense that a running program could generate an
arbitrarily large number of different type tags. The
practical virtues of this generality are not entirely clear.

6. Seals

Define a universally available function of no argu-
ments, Createseal. Each time it is called, Createseal
yields a pair

Seal~, Unseal

where i is a serial number which changes every time
Createseal is called. SeaL(x) yields a new object x '
such that any operation applied to x ' except Unseal~
results in an error (or some other abnormal condition).
UnseaL(x') yields x, if x ' was produced by Seal~, and
results in error otherwise. The object x' may. of course,
be passed as a parameter or value of a function, but its
properties cannot be examined except by Unseal~ .1

The interval manipulating functions can now be
revised as shown in Figure 3.

The programmer of these functions may depend
upon the following:
I. The value of Unseal(E) had to have been an argu-
ment of Seal at a previous time. Therefore, we have the
inductive rule: to prove p(Unseal(E)) for all E prove
that (VE)[o(Unseal(E))] implies p(F) for every F to
which Seal is applied. (Proving this is easier if Seal is
local to a small region.)
2. I f Unseal is local, applying Seal to an object x does
not endanger its being local (even if Seal(x) is not local).

In this particular case p(X) is "X is a pair of num-
bers (X1, X2) and X1 _<)(2 ." By assuming it is true of
P' and Q' in Sum, we can easily prove it is true of Seal's
argument, ((P ' (1)) + (Q ' (1))) , ((P ' (2)) + (Q ' (2))) .
Furthermore, p is true of the expression if X < Y then
X, Y else Y,X in Createint, so we have established by (1)
that o is true of all objects produced by Unseal.

Furthermore, by (2), any user of the primitive func-
tions will not be able to examine the objects except
through the functions provided.

The Seal mechanism provides two separable func-
tions of protection: authentication and limited access.
The first is embodied in (1); the second in (2).

7. Trademarks

If we are not concerned with limiting access to a class
of objects, we could make the Unseal operation publicly
available. The same effect can bc achieved in a more con-
venient way by use of a new primitive function, Create-
trademark. It is called with no arguments and returns
a pair

Markl , i

18 Communications January 1973
of Volume 16
the ACM Number 1

Fig. 3. Protected interval manipulating routines.

[Seal, Unseal is Createseal () ;
Createint is ~(X, Y) Seal (if X_< Y then X, Y

else Y,X) ;
Min is :kP(Unseal(P)) (1) ;
Max is XP(Unseal(P)) (2) ;
Sum is X(P,Q) IP' is Unseal(P) ;

Q' is Unseal(Q) ;
Seal ((P'(1) q-Q'(1)),(P'(2) +Q'(2)))];

Createint, Min, Max, Sum]

Fig. 4. Simulation of Seals with trademarks.

Createseal is •()
[Mark l , I1 is Createtrademark ();
Mark2, 12 is Createtrademark() ;
Password is Mark2(N1L) ;
Seal is ~,X

Markl (hP if 12 E Trademarklist(P)
then X
else go to Error) ;

Unseal is ~ Y
if I1 E Trademarklist(Y)

"then Y(Password)
else go to Error;

Seal, Unseal]

(Note: The expression x E L is true iff x is on list L).

19

where i is an ever-changing serial number as before.
Mark~ (x) yields an object x ' that behaves exactly like x
except that it bears t rademark I. Trademarkl is t (x ') is a
publicly available operation which yields a list of the
trademarks borne by x' . (By lists we mean nested pairs.)
Mark~ can be used in place of Seal~ and " i f i E Trade-
m a r k l i s t (x) t h e n x else go to Error", in place of Un-
seal (x) . A suitably rephrased version of the induction
rule in (1) still applies.

l f the reader doubts the utility of this device, stripped
of any access limiting power, we urge him to consider
how trademarks and other authenticating marks are
used in the commercial /bureaucratic sphere. A mark
from the Underwriters ' Laboratories attests that a par-
ticular device may be used without risk, a fact that a
user might discover only by extensive experience. A
letter saying, "You have been drafted," is much more
likely to be believed if it bears the mark of a draft
board. In neither case is limited access a consideration.
The fact that marks can be forged in the real world is of
no concern here.

The access-limiting ability of the Seal mechanism
is already present in the local variable conventions of
GEDANKEN. We can use trademarks and function-pro-
ducing functions to simulate Seals. Figure 4 displays
the programs. When Createseal is called it creates two
trademarks and then the functions Seal and Unseal
which use them. A sealed object is represented by a
t rademarked function which will divulge the original
object only when called with a password.

It is clear that this simulation provides the authenti-
cation of the original Seal primitives, For, Unseal trans-
fers to Error unless its argument bears t rademark 1 ; and
an object can bear t rademark 1 only if it was produced
by Seal, because Mark 1 is local.

To show that access to sealed objects is limited to
holders of the Unseal function we argue as follows:
F rom the argument in the preceding paragraph we know
that any object bearing t rademark 1 is a function which
arose from the k-expression in Seal. Therefore every Y
applied to Password in Unseal is an incarnation of that
k-expression. Hence P is the only other expression that
can ever have the same value as Password. (Applying
Trademarklist, a primitive, to P does not endanger this
claim.) Therefore Password is local. Now suppose
x' = Sea l (x) . By inspection of Seal, the only way x
can be recovered from x ' is to apply x ' to something
marked by t rademark 2. Since Mark2 is local we see
that Password is the only such object, and it is also local.
Therefore, the only way to get x ' applied to an object
bearing t rademark 2 is to apply Unseal to x ' .

Since seals can be simulated by trademarks without
undue loss of efficiency we are inclined to discard seals
as a basic semantic unit, invoking Occam's razor, or-
thogonality, or some other folk principle.

There is another reason for preferring t rademarks to
seals, however; they offer greater flexibility. Suppose we
have some class of objects (e.g. ordered pairs of num-

Communications January 1973
of Volume 16
the ACM Number 1

bers) which are used to represent various other classes
(e.g. intervals, points in the plane), in a variety of ways
(e.g. cartesian versus polar coordinates [3]). These ob-

jects may in turn represent others (e.g. a point in the
p l ane might represent a complex number or a vertex in a
geometrical figure). We can invent t rademarks to at-
test to these various properties and attach them to ob-
jects in any order we like. For example, a complex
number represented in the cartesian system might bear
four marks: pair, point-in-plane, cartesian, complex.
Programs may examine these marks or not as they
please; e.g. a routine that prints pairs is unconcerned
with all but the pair tag. If seals were used in this kind of
situation great complications would result. Every routine
that dealt with pairs would have to be equipped with a
battery of Unseal operations which it would use to un-
lock all the nested seals; to make matters worse it would
have to have a way of determining which Unseal was
called for at each stage.

Naturally, when we wish to limit access to a class of
objects as well as authenticate them, the full facilities of
the Seal mechanism are called for. Only in situations
involving no need for suppressing information is the
t rademark best.

8. A c c e s s K e y s

Now let us examine the implications of making the
Seal operation public and leaving Unseal private; e.g.
Seal (i ,x) places seal number i on x and Createseal
produces the pair

UnseaL, i.

I f one puts such a seal on an object and leaves it in a
public place, he is guaranteed that only the restricted
group of programs holding Unseal~ can access it. Those
programs, however, cannot depend upon an object thus
sealed to have any particular properties since anyone
can seal an object with any number. This mechanism is
similar to the access key described in [4]; each Unseal~
plays the role of an access key.

Access keys are symmetric to t rademarks in the
sense that they allow many unprivileged senders to give
information to one privileged receiver, the holder of the
Unseal operation. With t rademarks the sender of in-
formation has the privilege.

These new Createseal and Seal operations can also
be simulated using the t rademark primitives.

9. A u t h e n t i c a t i o n vs. A c c e s s C o n t r o l

There seems to be a chicken-egg relation between
these two notions that make them hard to disentangle.
Access to the authentication operation, e.g. Mark, must
be controlled if it is to be useful. On the other hand,
gaining access to things sometimes requires that a pro-

Fig. 5. Simulation of trademarks with access control.

[Oblist is Ref(NIL); //List of all Marked Objects, really nested
//triples.

Seriahmmber is Ref(O) ;
Findob is XX[E is Ref(Oblist) ;

Loop: if E= NIL then NIL else //E(1) is unique name
if E(1) = X then E(2) else //E(2) is (TMlist,Object)
{E:=E(3); go to Loop}]; //E(3) is next item

Trademarklist is ~X
[T is Findob(X) ;

if T=NIL then NIL else T(1)];
Get is)~X

IT is Findob(X) ;
if T = NIL then X else T(2)];

Createtrademark is ~()
[I is Val(Serialnumber) ;

Mark is ~X//Always add to Oblist
ITis (l, Trademarklist(X)), Get(X);

Oblist := Ref(NIL), T, Val(Oblist);
Oblist(1)];

Serialnumber.= SeriahTumber q- 1;
Mark, 1];

Createtrademark, Trademarklist, Get]

gram provide authenticated evidence of its access rights.
It seems clear that access control is a sine qua non of

security; if every program has access to every object
and operation there is no protection. The case is not so
clear for authentication. Given the access control mech-
anisms already present in GEDANKEN, i.e. local ref-
erences, we can simulate the t rademark system if
we require the user to use a function, Get, when
accessing a marked object. (This is a minor incon-
venience.) The idea is to hold all objects submitted to
Mark in a protected list (Oblist), paired with their trade-
mark lists. Each such pair is given a unique name which
is used to retrieve the object or its t rademark list.
GEDANKEN'S R e f operation is an admirable generator of
unique names. The scheme works because access to the
list is limited. Figure 5 shows an expression which
evaluates to produce the functions Createtrademark,
Trademarklist, and Get. The idea behind this program
should be familiar to those who understand how C-lists
[1] are used; basically, we are using memory protection
(rather clumsily) to achieve type bit protection.

This simulation of t rademarks is unsatisfactory in
two respects. First, one can say that we really haven ' t
started without type protection since we use references

20 Communications January 1973
of Volume 16
the ACM Number 1

to s imula te m a r k e d objects a n d they are p r e s u m a b l y
m a r k e d in some way. T o avo id this charge we cou ld have
used integers ins tead , keep ing a c o u n t e r to genera te new
ones. However , this is n o t en t i re ly a d e q u a t e since it
wou ld then be imposs ib le for a t r a d e m a r k e d objec t to be
local to a n y region. Th e second s h o r t c o m i n g is t ha t it is
wildly inefficient: a list m u s t be searched ju s t to access
a n object , a n d m a r k e d objects will never be ga rbage
collected even af ter all references ou t s ide the p ro tec ted
reg ion have d i sappeared . A t p resen t we see n o way of
o v e r c o m i n g these p rob l ems .

W e believe t h a t ' a u t h e n t i c a t i o n is a n o t i o n o r t h o g o n a l
to l imi t a t i on o f access. Ou r bel ief rests u p o n i n t u i t i o n

a n d the fact t ha t the fo rmer seems difficult to s imu la t e
with the latter.

R e m a r k s

The ideas p resen ted here are, in a sense, a r epackag-
ing o f fami l ia r n o t i o n s f rom p r o g r a m m i n g l anguages
a n d ope ra t i n g systems : scope rules, capabi l i t ies , m e m o r y
pro tec t ion , a n d type bits. W e have cons ide red these
devices in ex t remely genera l forms, a n d it is en t i re ly
poss ib le tha t less genera l devices m a y be sufficient a n d
e c o n o m i c a l l y m o r e r easonab le . Specifically, the func-
t i o n - p r o d u c i n g func t ions , indef in i te ly cascadab le type
tags, a n d r u n - t i m e c rea t ion of types en ta i l subs t an t i a l
costs by c u r r e n t s t anda rds . F i n d i n g r e a s o n a b l e c o m -
p romises be tween these facilit ies a n d ones efficiently im-
p l e m e n t a b l e t o d a y is a subjec t o f c o n t i n u i n g research.

This w o r k bu i lds u p o n the ideas of m a n y people ,
mos t no t ab ly , L a m p s o n [4], L a n d i n [5], R e y n o l d s [7],
a n d D e n n i s [1].

Acknowledgments. Ear l ie r vers ions of this pape r were
g iven sympa the t i c r ead ings by But ler W. L a m p s o n a n d
James N. Gray .

Appendix . A Br ie f C o m p a r i s o n o f G e n d a n k e n with
A l g o l - 6 0

The basic means of introducing new identifiers is the is-declara-
tion which is used in three ways here:

1. Count is Ref(O) is like integer Count; Count := 0
2. Locate is ~X[. --] is like integer procedure Locate(X);

begin - . . end
3. I is Locate(X) is like integer I; I := Locate(X)

except subsequent assignments to 1 are forbidden. The types of
identifiers are never declared. The declaration and calls of param-
eterless procedures employ the null parameter list, written "()".

References (addresses) are dealt with more explicitly. Ref is a
function which returns a new reference, containing its argument.
If r is a reference, Val(r) is its contents, and r := e changes its
contents to e. A set of coercion rules (not given here) serve to insert
applications of VAL so that, if Count is a reference,

Count+ 1 means Val(Count) + 1
I<_ Count means 1< Val(Count)
Ref(Count) means Ref(Val(Count))

and Count(l) means (Val(Count))(l)
Vectors and n-tuples are subsumed under the more general

notion of functions. The expressions
(2,4,6)

and (~Xif l < X < 3 then 2*X
else go to Error)

and Vector(1,3,XX 2*)0
all denote the same thing: a function Fsuch that F(1) = 2, F(2) = 4,
F(3) = 6. If Createseal() returns a pair, the declaration

Seal, Unseal is Createseal()

serves to decompose it and bind the components to the two iden-
tifiers.

The general form for a (large) GEOANKEN expression is a
sequence of (0 or more) is-declarations followed by (1 or more)
expressions (X := y is an expression).

[d l ; ' ' ' ;d,,;el;... ;e,~]

The declarations and expressions are evaluated from left to right
and the value of the whole expression is e~. The (textual) scope of
the definitions is limited by the brackets.

To make the programs more readable we write key words of
GEDANKEN in boldface and capitalize the first letter of identifiers.
Also variously-shaped brackets are used. Comments are written to
the right of double slashes (//).

Received June 1971 ; revised January 1972

References

1. Dennis, J. B., and Van Horn, E. Programming semantics for
multiprogrammed computations. Comm. ACM 9, 3 (Mar. 1966),
143-155.
2. Evans, A. PAL--A language designed for teaching program-
ming linguistics. Proc. ACM 23rd Nat. Conf. 1968, Brandon
Systems Press, Princeton, N.J., pp. 395-403.
3. Fischer, A.E., and Jorrand, P. BASEL: The base language
for an extensible language facility. Rept. CA-6806-2811, Computer
Associates, Wakefield, Mass., 1968.
4. Lampson, Butler W. Dynamic protection structures. Proc.
1969 FJCC. The Thompson Book Co. pp. 27-38.
5. Landin, P.J. The next 700 programming languages. Comm.
ACM9, 3 (Mar. 1966), 157-166.
6. McCarthy, J., et al. LISP 1.5 Programmers' Manual, M.I.T.
Press, Cambridge, Mass., 1962.
7. Reynolds, J.C. GEDANKEN--A simple typeless language
based on the principle of completeness and the reference concept.
Comm. ,4CM 13, 5 (May 1970), 308-319.

21 Communications January 1973
of Volume 16
the ACM Number 1

