Lab Exercises: More Practice with Object-Oriented Programming

1. Consider the BankAccount example from last week (see Notes/week(09/BankAccount.py on the class Web
page). Add a too-good-to-be-true method called r eset Bal ance, which takes no input parameters (other than
sel f) and resets the account's balance to the original amount that it was created with. For example:

>>> a = BankAccount (500)

>>> a. w t hdraw(350)

W t hdr ew $350. 00

>>> a. w t hdraw(100)

W t hdrew $100. 00

>>> a.inquiry()

Bal ance is currently $50.00
>>> a.resetBal ance()

Bal ance is currently $500. 00
>>>

2. Now let's make BankAccount objects be password-protected. Modify the __i ni t __ constructor so that it takes
an extra password string as input, as in

a = BankAccount (500, "open sesane")

The account should process a wi t hdr aw or i nqui ry request only if it is accompanied by the password with
which the account was created, and should otherwise complain:

>>> a.w t hdraw(100, "open sesane")
W t hdrew $100. 00

>>> a.w t hdraw(100, "abracadabra")
Sorry, that password is incorrect
>>> a.inquiry("stick emup")
Sorry, that password is incorrect
>>>

3. Implement a Product class. A product has a name and a price, for example: Product("Toaster", 29.95). Include
amethod __str__ that returns the name and price of the product as a formatted string, a method

pri ceW t hTax(per cent), which returns the price with sales tax of the given percentage added on, and a method
set NewPr i ce(armount), which changes the product's price to the new amount and prints out a message. Your
objects should behave as follows:

>>> giznmob = Product (" Ronco Tormato Scranbler”, 39.95)
>>> print gizno

Ronco Tomato Scranbl er, price: $39.95 plus tax

>>> gi zno. pri ceWt hTax(10) (10% tax)

43. 945

>>> gi zno. set NewPri ce(49. 95)

Ronco Tonmat o Scranbl er now costs $49. 95

>>> gi zno. pri ceWt hTax(10)

54. 945

>>>

(continued on back)

4. Implement an Auditorium class. An auditorium has a seating capacity that is specified when the auditorium is
created. Once this capacity is reached, no more seats can be filled. An Auditorium object should keep track of its
seating capacity, and the number of seats that are currently open. Write and test the following methods:

« seatsAvail abl e() returns the current number of empty seats.

- seatsCOccupi ed() returns the current number of occupied seats.

« fill Seats(nunRequested) attempts to fill up to nunRequest ed seats. If nunRequest ed is greater than
the number of currently available seats, all available seats are filled and a message reporting the number
of requests that could be accommodated is printed.

+ 1l ookl nside() prints out the current number of filled and unfilled seats.

>>> carnegi eHal | = Auditorium 1500)
>>> carnegi eHal | . | ookl nsi de()

No one is inside

>>> carnegi eHal | . fill Seats(1000)
Filled 1000 seats

>>> carnegi eHal | . | ookl nsi de()

1000 people inside with 500 seats |eft
>>> carnegi eHal | . fill Seats(700)

Sorry, sold out after filling 500 seats
>>> carnegi eHal | . | ookl nsi de()

1500 people inside with O seats left
>>> carnegi eHal | . fill Seats(100)

Sorry, all sold out

>>>

5. Implement a Vehicle class that, like the Auditorium class above, keeps track of the number of people inside
and the total number of seats available. However, a Vehicle should also remember the names of each person
inside. Write and test the following methods:

+ seatsAvail abl e() returns the current number of empty seats.

« seat sCccupi ed() returns the current number of occupied seats.

- addPerson(nane) fills one more seat with a person of the specified name. If there are no more seats
available, a message reporting this fact should be printed.

« renovePerson(nane) removes a person from the Vehicle. If there is no person inside with the specified
name, an error message is printed. If more than one person with the same name is inside, only one of
them is removed.

« |l ookl nside() prints out the names of all of the people currently inside the Vehicle.

>>> chevy = Vehicl e(4)

>>> chevy. addPer son(" Thel ma")
>>> chevy. addPer son(" Loui se")
>>> chevy. | ookl nsi de()

Thel ma

Loui se

2 enpty seats left

>>>

