Lab Exercises: Introduction to Object-Oriented Programming

1. Implement a class called Sphere to represent a solid geometric sphere. Your class should have the
following methods:

__init__(self, radius) Creates a sphere having the given radius
get Radi us(sel f) Returns the radius of this sphere
surfaceArea(sel f) Returns the surface area of the sphere

vol une(sel f) Returns the volume of the sphere

The following formulas will help:
Surface Area =4 mr’
Volume = 4/3 1w r’

Test your class by creating a new sphere of radius 1 and asking it for its surface area and volume:
>>> s = Sphere(1)

>>> print s.surfaceArea()

12.566370614359172

>>> print s.volunme()

4.1887902047863905

>>>

2. Implement a class called Car with the following properties. A Car has a make, model, and year, a certain
fuel efficiency (measured in miles per gallon), and a certain amount of fuel in the gas tank (measured in
gallons). First, we need a constructor method __i ni t __ that takes the make, model, year, and miles-per-
gallon and initializes the Car's internal variables accordingly:

class Car:
def __init_ (self, make, nodel, year, npg):
sel f.car Make = nmake
sel f.car Mbdel = npdel

sel f.car Year = year
self.efficiency = npg
self.gas = 0.0

We can then create a new car object like this: mycar = Car(“Honda”, “Accord”, 2004, 28)

3. Next, let'sadd a __str__ method so that we can print out Car objects in a nice way. We'll have __str__
return a string such as ‘2004 Honda Accord”:

def _ str__(self):
s = "%l % %" % (self.carYear, self.carMke, self.carMdel)
return s

Now test your code by creating a few Car objects and printing them:

nycar = Car(“Honda”, “Accord”, 2004, 28)

nyot hercar = Car(“Rolls Royce”, “Phantoni, 1968, 15)
print mycar

print myot hercar

(continued on back)

4. Next, add methods called r ef uel and dri ve to your Car class. The refuel method should take an amount
of gas (in gallons) as input and add it to the car's internal fuel level. The drive method should take a
distance (in miles) as input and reduce the car's gas by the amount needed to drive the given distance.
Hint: the amount of gas needed to drive d miles is d / mpg, and the distance traveled on g gallons of gas is
g x mpg. If the fuel needed is greater than the amount available in the tank, it should be set to zero and a
message “Ran out of gas” should be printed. Your methods should behave as shown below:

>>> nycar = Car(“Honda”, “Accord”, 2004, 28)
>>> mycar. refuel (10)

Added 10 gallons of gas to the tank

>>> mycar. gas

10.0

>>> mycar. drive(150)

Drove 150 miles. 4.6 gallons of gas |eft
>>> nycar. drive(200)

Ran out of gas after 130 mles.

>>> nycar. gas

0.0

5. Implement a class called Card to represent a playing card. Your class should have the following methods:

_init__(self, rank, suit) Creates acard of the specified rank and suit, where r ank is an
integer in the range 1-13 indicating the ranks Ace through King,

and sui t is the string “Spades”, “Diamonds”, “Hearts”, or “Clubs”.

get Rank(sel f) Returns the rank of the card

get Sui t (sel f) Returns the suit of the card

BJval ue(sel f) Returns the Blackjack value of a card. Ace counts as 1, face cards count as 10.
__str__(self) Returns a string that names the card. For example: “Ace of Spaces” or “2 of Clubs”.
equal s(sel f, otherCard) Returns true if this card has the same rank and suit as ot her Car d.

Test your Card class with a program called t est car ds() that prints out N randomly generated cards and
their associated Blackjack value, where N is a number supplied by the user.

6. Implement a Student class. A Student has a name and a total quiz score, which is the sum of all of the quiz
scores received by the student so far. Implement the following methods:

_init__(self, nane) Creates a student with the specified name with an initial quiz total of 0.

name(sel f) Returns the student's name

recordQui z(sel f, score) Adds anew quiz score to the student's total

get Tot al Poi nt s(sel f) Returns the total points received so far

get Aver ageScor e(sel f) Returns the student's average quiz score. For this one, the Student object also
needs to keep track of the number of quizzes that the student has taken so far.

Test your Student class as follows:

>>> sue = Student (“Sue”)

>>> sue. recor dQui z(10)

>>> sue. recordQui z(15)

>>> sue. recordQui z(14)

>>> print sue.getTotal Points(), sue.getAverageScore()
39 13.0

