CS 30 Lab 8 — UTMs and Busy Beavers

In this lab we will improve our Python Turing machine simulator and use it to investigate certain types of
machines called Busy Beavers.

1. In your home directory, execute the following Linux commands (type them exactly as shown). The first
command copies the entire contents of the directory /common/cs/cs30/1ab8 to your home directory. The
second command moves you to that directory, where you will find the UTM.py program we developed in
class this week, along with a number of Turing machine description files.

cp -r /common/cs/cs30/1lab8 .
cd lab8
1s

2. Open the UTM program in IDLE and test it out on the machines inverter.tm, eraser.tm, and looper.tm.
For example, you can run the Inverter TM on the input string “000111” as follows (we'll add some
underscore symbols representing blanks after the string to give the machine room to work):

>>> inverter = loadTM('inverter.tm')
>>> utm(inverter, '000111 ')

3. [From The New Turing Omnibus, by A. K. Dewdney] Turing machines, runing back and forth along their
tapes, reading a symbol here and writing a symbol there, are a little like beavers who busily ply the waters
between forest and dam, carrying sticks and branches to and fro. Just how busy can a Turing machine be?
Some Turing machines are infinitely busy, in the sense that they never halt. Moreover, many of those that
do halt may be made busy for arbitrarily long periods by increasing the size of their inputs. Thus it seems
sensible to frame this question in the context of an initially empty tape, for all machines that halt with such
a tape as input.

The Busy Beaver problem asks what is the maximum number of 1's that any n-state Turing machine can
print on an initially blank tape before halting? You might think that Turing machines with only a few states
aren't complicated enough to print out very many 1's before halting. Let's investigate this problem by
simulating busy beaver machines with our UTM program...

4. Try running your UTM program on the copier.tm machine with the initial tape contents ' 11000q"' ,
containing no blank symbols, and observe what happens. As soon as the machine runs out of tape, the
program crashes because the headPosi t i on index is no longer within a valid range. However, we can
work around this problem for copier by just including extra blanks on the initial tape, so that there is
enough room to hold a copy of the input string. Try running copier on' 11000q____ ' as an example.

5. To simulate busy beavers, we need to fix this problem, because we don't know in advance how much tape a
machine will end up using before it halts. We need a way of automatically adding more blanks to a tape if
the machine tries to move off the end of it. Write a function called expandRi ght (t ape) that takes a tape
(that is, a list of symbols) as input and returns a new tape twice as long containing the symbols of the
original tape followed by blank symbols (underscore characters). For example:
expandRight(['a', 'b', 'c¢']) shouldreturnthelist [*a', 'b'", "¢, ' ', "', ' ']

Next, add the lines below to the UTM in the appropriate place. This checks to see if the tape head is about
to move off the right end of the tape, and if so replaces the tape with an expanded version.

if headPosition == len(tape) — 1:
tape = expandRi ght (t ape)

Test the UTM to make sure it works by running it on copier.tm with the input tape ' 11000q' as before.
This time, you should see the tape expand when the read/write head moves past the g symbol.

6. We need to do this for the left side of the tape as well. Write a function called expandLeft (t ape) that
works like expandRi ght , except that it adds blanks to the tape on the left side instead of the right side:
expandLeft(['a', 'b', 'c¢']) should returnthelist [* ', ' ', "', "a', 'b'", '¢c']

7. Modify the UTM so that attempting to move off the left end of the tape automatically doubles the size of
the tape first. This is slightly trickier than the right-side case, because you can't compute the new head

position by just subtracting one (which would give a negative value). Instead, the head should point to the
middle of the newly expanded tape.

Test your code with the machine called busy3.tm, which is a 3-state busy beaver. When started on an
initial tape of five blanks ' ', it moves one cell to the right, then one cell to the left, then one more
cell to the left. At this point, you should see the tape expand to the left. The machine should halt after
another 10 steps. Make sure your UTM program works correctly on this machine before going on.

You should also try out christmasTree.tm and zigzag.tm at this point. These machines go into infinite
loops, and thus never halt, although they do produce interesting patterns as their tape head weaves its way
back and forth across the tape. To interrupt execution, just type Control-C.

8. How many 1's does the busy3 machine leave behind on its tape after halting? As it turns out, busy3 prints
out the maximum number of 1's possible for a three-state machine. The corresponding values for a few
other machine sizes are given below:

of states max possible # of 1's printable
1 1
2 4
3 ?
4 13
5 ?

9. From the table, it seems like small numbers of states only allow a few 1's to be printed out. However,
machines with only five states can exhibit much more complicated behavior. Try out the machine
busy5a.tm, which is a five-state busy beaver. This machine runs for a very long time before halting! To
find out just how long, add a counter to the UTM to count the number of steps and have it print out this
value upon halting. Also, it will help to temporarily comment out the pri nt Tape(tape, headPosi ti on)
line to speed up execution. How many steps does busy5a take?

10.Next, let's find out how many 1's are left behind on the tape. There are too many to count by hand, so write
a function count Ones(t ape) to do the work for you and have the UTM report the final number of 1's on
the tape when it halts. For example, count Ones should work as shown below:

count Ones(['0', '1', '1', 'O, "1', '0', '0', '_', '_']) should return 3
How many 1's does busySa leave behind? (Compare this to the other values in the table above.)

11.The machine busySb.tm is also a five-state busy beaver. This one takes more than fwice as many steps as
busySa to halt, although it doesn't leave behind quite as many 1's. If you have the patience, find out how
many steps it does take, and how many 1's it leaves behind.

12.Incidentally, consider the mathematical functions ones(n) and steps(n), which tell you the maximum
possible number of 1's printable by any Turing machine with #n states, and the corresponding number of
steps required. The table from part 8 above showed the first few values of ones(n). These are examples of
provably uncomputable functions, in the sense that no computer program could ever be written, even in
principle, to correctly compute the values of ones(n) and steps(n) for all possible n.

