

The Eight-Puzzle

Initial state

Goal state

- State representation: (3 2845671 _)
- Operators: Up, Down, Left, Right
- Example: (32845671_) $\underset{\text { Down }}{\Rightarrow}(32845$ _716)
- M\&C problem has < 30 possible states
- 8-puzzle has 9! possible states $=362,880$
- 15-puzzle has 16 ! possible states $=20,922,789,888,000$
- Demo

Heuristic Function 1

Number of misplaced tiles

 (not including the blank)

Only tile 8 is misplaced, so heuristic estimate $=1$
In other words, the heuristic is telling us that it thinks a
 solution might be reached in 1 more move.

Heuristic Function 2

Only tiles 3, 8 and 1 are misplaced (by 2, 3, and 3 spaces, respectively) so the heuristic function evaluates to 8

In other words, the heuristic is telling us that it thinks

3 spaces

Total $=8$ a solution is reachable in 8 more moves.

Notation: $h(\mathrm{n}) \quad h($ current state $)=8$

Manhattan-distance heuristic

Manhattan-distance heuristic

Manhattan-distance heuristic

Always choosing the next state based on the lowest heuristic value is called hill climbing.

In this example, hill climbing does not work!

1	2	3
4	5	8
6	7	

In this example, hill climbing does not work!

In this example, hill climbing does not work!

In this example, hill climbing does not work!

All the nodes on the leaves are taking a step backwards (a "local minimum")

Note that this puzzle is solvable in just 12 more steps.

The A* Algorithm

- Just like before, but we also keep track of the distance from the initial state to each intermediate state
- Choose the next node based on the sum of two values:
- How far we think we have left to go (the heuristic estimate)
- How long it took to get here
$-f(\mathrm{n})=h(\mathrm{n})+g(\mathrm{n})$
- If our heuristic function never overestimates, this algorithm is guaranteed to find the shortest path to the goal!
- Underestimating is fine, but the closer the estimate is to the true value, the faster the search will find the goal.
- If it does occasionally overestimate the number of steps left, the search process may get lost in blind alleys, or may find a suboptimal path to the goal

