Artificial Neurons: A Recap

Artificial Neurons: A Recap

Artificial Neurons: A Recap

$$
1 \times 2.51+1 \times 0.13+0 \times-1.27+1 \times 0.09=2.73
$$

Output unit:

Weighted connections:

Input Pattern

Artificial Neurons: A Recap

$$
1 \times 2.51+1 \times 0.13+0 \times-1.27+1 \times 0.09=2.73
$$

Output unit:

Weighted connections:

Input units:

Input Pattern

Artificial Neurons: A Recap

Response

Perceptrons

- Binary threshold neurons
- Studied by Frank Rosenblatt of Cornell in early 1960's
- Perceptron training procedure

Perceptrons

- Binary threshold neurons
- Studied by Frank Rosenblatt of Cornell in early 1960's
- Perceptron training procedure

1. present an input pattern target $=1$

Perceptrons

- Binary threshold neurons
- Studied by Frank Rosenblatt of Cornell in early 1960's
- Perceptron training procedure

1. present an input pattern
target $=1$
2. compute output value

$$
\text { output }=\Theta \text { (sum of: inputs } \times \text { weights })
$$

Perceptrons

- Binary threshold neurons
- Studied by Frank Rosenblatt of Cornell in early 1960's
- Perceptron training procedure

1. present an input pattern
2. compute output value

$$
\text { output }=\Theta(\text { sum of: inputs } \times \text { weights })
$$

3. compare output to target value
error = target - output

$$
\begin{aligned}
& \text { target }=1 \\
& \text { error }=1-0=1
\end{aligned}
$$

Perceptrons

- Binary threshold neurons
- Studied by Frank Rosenblatt of Cornell in early 1960's
- Perceptron training procedure

1. present an input pattern
2. compute output value

$$
\text { output }=\Theta(\text { sum of: inputs } \times \text { weights })
$$

3. compare output to target value error = target - output
4. if incorrect, adjust weights

$$
\text { weight_adjust }=\varepsilon \times \text { input } \times \text { error }
$$

$$
\begin{aligned}
& \text { target = } 1 \\
& \text { error = }
\end{aligned}
$$

Perceptrons

- Binary threshold neurons
- Studied by Frank Rosenblatt of Cornell in early 1960's
- Perceptron training procedure

1. present an input pattern
2. compute output value

$$
\text { output }=\Theta(\text { sum of: inputs } \times \text { weights })
$$

3. compare output to target value
error = target - output
4. if incorrect, adjust weights

$$
\text { weight_adjust }=\varepsilon \times \text { input } \times \text { error }
$$

5. repeat until all input patterns give the correct output value

Perceptrons

- Perceptron learning theorem

The perceptron training procedure is guaranteed to find weight values that correctly solve the problem, within a finite number of steps, provided such weight values exist.

Perceptrons

- Perceptron learning theorem

The perceptron training procedure is guaranteed to find weight values that correctly solve the problem, within a finite number of steps, provided such weight values exist.

- Not all problems can be solved by single-layer perceptrons
- Classic example: XOR

$$
\begin{array}{llll}
0 & 0 \Rightarrow 0 & 0 & 1 \Rightarrow 1 \\
1 & 1 \Rightarrow 0 & 1 & 0 \Rightarrow 1
\end{array}
$$

Perceptrons

- Perceptron learning theorem

The perceptron training procedure is guaranteed to find weight values that correctly solve the problem, within a finite number of steps, provided such weight values exist.

- Not all problems can be solved by single-layer perceptrons
- Perceptrons with more than one layer of weights can solve XOR, in principle
- No training procedure or learning theorem for multi-layer networks was known in the 1960s

Perceptrons

- Marvin Minsky and Seymour Papert of MIT published Perceptrons in 1969
- They rigorously analyzed the limitations of perceptrons, and speculated that these limitations also applied to networks with multiple layers of weights
- This caused many people to seriously question the capabilities of neural networks
- As a result, interest in neural network research (and funding) largely dried up
 for more than a decade

Linear Separability

- It is helpful to think about neural networks geometrically
- Input patterns correspond to points in the input space
- A perceptron that correctly classifies input patterns as belonging to category A or B corresponds to a straight line dividing the input space into two halves
- The category A patterns lie in one half of the space, and the category B patterns lie in the other half
- If the input patterns can be separated by a straight line in this way, we say the problem is linearly separable
- Minsky and Papert proved that many interesting problems are not linearly separable, and thus no perceptron can solve them

Linear Separability

x	y	x AND y	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

Linear Separability

x	y	x AND y	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

Linear Separability

x	y	x AND y	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

x	y	x OR y	
0	0	0	\bigcirc
0	1	1	
1	0	1	
1	1	1	

Linear Separability

x	y	x AND y		x	y	x OR y
0	0	0		0	0	0
0	1	0		0	1	1
1	0	0		1	0	1
1	1	1		1	1	1

Linear Separability

x	y	x AND y	
0	0	0	\bigcirc
0	1	0	
1	0	0	0
1	1	1	

x	y	x OR y	
0	0	0	0
0	1	1	
1	0	1	
1	1	1	

x	y	x XOR y	
0	0	0	0
0	1	1	
1	0	1	
1	1	0	

Linear Separability

x	y	x AND y	
0	0	0	0
0	1	0	
1	0	0	0
1	1	1	

x	y	x OR y	
0	0	0	0
0	1	1	
1	0	1	
1	1	1	

x	y	x XOR y	
0	0	0	0
0	1	1	
1	0	1	
1	1	0	

Linear Separability

- This idea applies to input spaces of any dimensionality
- Example: 3-dimensional input patterns

linearly separable

Linear Separability

- This idea applies to input spaces of any dimensionality
- Example: 3-dimensional input patterns

partially linearly separable

Linear Separability

- This idea applies to input spaces of any dimensionality
- Example: 3-dimensional input patterns

not linearly separable

Linear Separability

- Multi-layer networks can learn to classify input patterns that are not linearly separable
- Example: recognizing vowels

Parallel Distributed Processing (PDP)

- In the 1980s, a way to train multi-layer networks was discovered, called the backpropagation learning algorithm
- David Rumelhart, Geoffrey Hinton, James McClelland, and others revived interest in neural networks with the publication of the "PDP books"
- John Hopfield analyzed networks that behaved as memories, using techniques from physics
- The field has been going strong ever since

Artificial Neurons: Continuous Version

Artificial Neurons: Continuous Version

Artificial Neurons: Continuous Version

$$
1.0 \times 2.51+0.0 \times 0.13+0.2 \times-1.27+0.7 \times 0.09=2.32
$$

Output unit:

Weighted connections:

Input units:

Input Pattern

Artificial Neurons: Continuous Version

$$
1.0 \times 2.51+0.0 \times 0.13+0.2 \times-1.27+0.7 \times 0.09=2.32
$$

Artificial Neurons: Continuous Version

Response

Constraint Satisfaction Networks

- No learning occurs
- Connection strengths are permanently fixed
- Excitatory and inhibitory feedback connections
- Node activations represent current state of the network
- Node activations settle into a stable pattern over time
- Can behave as a content-addressable memory
- Examples:
- Jets and Sharks network
- Hopfield memories

The Jets and the Sharks

Name	Gang	Age	Education	Marital Status	Occupation
Art	Jets	40s	Junior High	Single	Pusher
Al	Jets	30s	Junior High	Married	Burglar
Sam	Jets	20s	College	Singe	Bookie
Clyde	Jets	40s	Junior High	Single	Bookie
Mike	Jets	30s	Junior High	Single	Bookie
Jim	Jets	20s	Junior High	Divorced	Burglar
Greg	Jets	20s	High School	Married	Pusher
John	Jets	20s	Junior High	Married	Burglar
Doug	Jets	30s	High School	Single	Bookie
Lance	Jets	20s	Junior High	Married	Burglar
George	Jets	20s	Junior High	Divorced	Burglar
Pete	Jets	20s	High School	Single	Bookie
Fred	Jets	20s	High School	Single	Pusher
Gene	Jets	20s	College	Single	Pusher
Ralph	Jets	30s	Junior High	Single	Pusher
Phil	Sharks	30s	College	Married	Pusher
Ike	Sharks	30s	Junior High	Single	Bookie
Nick	Sharks	30s	High School	Single	Pusher
Don	Sharks	30s	College	Married	Burglar
Ned	Sharks	30s	College	Married	Bookie
Karl	Sharks	40s	High School	Maried	Bookie
Ken	Sharks	20s	High School	Single	Burglar
Earl	Sharks	40s	High School	Married	Burglar
Rick	Sharks	30s	High School	Divorced	Burglar
Ol	Sharks	30s	College	Married	Pusher
Neal	Sharks	30s	High School	Single	Bookie
Dave	Sharks	30s	High School	Divorced	Pusher

The Jets and the Sharks

The Jets and the Sharks

The Jets and the Sharks

The Jets and the Sharks

Name	Gang	Age	Education	Marital Status	Occupation
Art	Jets	40s	Junior High	Single	Pusher
Al	Jets	30s	Junior High	Married	Burglar
Sam	Jets	20s	College	Singe	Bookie
Clyde	Jets	40s	Junior High	Single	Bookie
Mike	Jets	30s	Junior High	Single	Bookie
Jim	Jets	20s	Junior High	Divorced	Burglar
Greg	Jets	20s	High School	Married	Pusher
John	Jets	20s	Junior High	Married	Burglar
Doug	Jets	30s	High School	Single	Bookie
Lance	Jets	20s	Junior High	Married	Burglar
George	Jets	20s	Junior High	Divorced	Burglar
Pete	Jets	20s	High School	Single	Bookie
Fred	Jets	20s	High School	Single	Pusher
Gene	Jets	20s	College	Single	Pusher
Ralph	Jets	30s	Junior High	Single	Pusher
Phil	Sharks	30s	College	Married	Pusher
Ike	Sharks	30s	Junior High	Single	Bookie
Nick	Sharks	30s	High School	Single	Pusher
Don	Sharks	30s	College	Married	Burglar
Ned	Sharks	30s	College	Married	Bookie
Karl	Sharks	40s	High School	Maried	Bookie
Ken	Sharks	20s	High School	Single	Burglar
Earl	Sharks	40s	High School	Married	Burglar
Rick	Sharks	30s	High School	Divorced	Burglar
Ol	Sharks	30s	College	Married	Pusher
Neal	Sharks	30s	High School	Single	Bookie
Dave	Sharks	30s	High School	Divorced	Pusher

The Jets and the Sharks

The Jets and the Sharks

Name	Gang	Age	Education	Marital Status	Occupation
Art	Jets	40s	Junior High	Single	Pusher
Al	Jets	30s	Junior High	Married	Burglar
Sam	Jets	20s	College	Singe	Bookie
Clyde	Jets	40s	Junior High	Single	Bookie
Mike	Jets	30s	Junior High	Single	Bookie
Jim	Jets	20s	Junior High	Divorced	Burglar
Greg	Jets	20s	High School	Married	Pusher
John	Jets	20s	Junior High	Married	Burglar
Doug	Jets	30s	High School	Single	Bookie
Lance	Jets	20s	Junior High	Married	Burglar
George	Jets	20s	Junior High	Divorced	Burglar
Pete	Jets	20s	High School	Single	Bookie
Fred	Jets	20s	High School	Single	Pusher
Gene	Jets	20s	College	Single	Pusher
Ralph	Jets	30s	Junior High	Single	Pusher
Phil	Sharks	30s	College	Married	Pusher
Ike	Sharks	30s	Junior High	Single	Bookie
Nick	Sharks	30s	High School	Single	Pusher
Don	Sharks	30s	College	Married	Burglar
Ned	Sharks	30s	College	Married	Bookie
Karl	Sharks	40s	High School	Maried	Bookie
Ken	Sharks	20s	High School	Single	Burglar
Earl	Sharks	40s	High School	Married	Burglar
Rick	Sharks	30s	High School	Divorced	Burglar
Ol	Sharks	30s	College	Married	Pusher
Neal	Sharks	30s	High School	Single	Bookie
Dave	Sharks	30s	High School	Divorced	Pusher

The Jets and the Sharks

Example 1: Retrieving Info About Sam

Example 2: Retrieving Info About Jets

Properties of the Memory

- Graceful degradation
- damaging a few connections or units will degrade the memory's performance, but not in a catastrophic way
- Resistance to noise
- probing the memory with partially incorrect information will usually still produce meaningful output
- Spontaneous generalization
- the memory is able to retrieve prototypical patterns based on common similarities shared among several memories
- Pattern completion
- the memory can fill in missing properties of individuals based on what it knows about other, similar instances

Jets and Sharks Demo

