

Real-World Neural Network Applications

● Zip code recognizer (Yann LeCun, AT&T Bell Labs, 1980s)
– Used a large neural network with several layers
– Trained on handwritten zip codes from U.S. mail
– Achieved the state of the art in digit recognition
– Classification accuracy > 95%

Real-World Neural Network Applications

Real-World Neural Network Applications

● ALVINN (Dean Pomerleau, CMU, 1990s)
– Autonomous vehicle controlled by a neural network
– Input: image of road, Output: steering wheel position
– Neural network learns by “observing” a human driver
– In 1995, steered a car semi-autonomously from coast to

coast (all but 50 of 2,850 miles)

Real-World Neural Network Applications

● Weather forecasting (UK Meteorological Office)
– Visible and infrared satellite images were used to train a

neural network to classify cloud patterns into 4 categories:
● clear land/sea
● dynamic cloud
● shallow convective cloud
● deep convective cloud

– During training, statistical features were calculated for
each image and presented to the network, along with the
classification category

– Network achieved a prediction accuracy of 94% on
independent image samples

– System became fully operational in 1999

Real-World Neural Network Applications

Visible

Infrared

Expected airmass

purple = clear land/sea
green = dynamic cloud
yellow = shallow convective cloud
red = deep convective cloud



Real-World Neural Network Applications

● TD-Gammon (Gerry Tesauro, IBM, 1990s)
– Learned by playing over 1.5 million games against itself
– Discovered novel board evaluation strategies
– Trained neural networks with reinforcement learning
– Achieved parity with the top 5-10 players in the world
– By far the best computer backgammon program

Auto-Associator Networks

3 hidden units

8 input units

8 output units

Auto-Associator Networks

3 hidden units

8 input units

8 output units

[0 0 1 0 0 0 0 0]

[0 0 1 0 0 0 0 0]

Input =

Target =

Auto-Associator Networks

3 hidden units

8 input units

8 output units

[0 0 1 0 0 0 0 0]

[0 0 1 0 0 0 0 0]

Input =

Target =

Auto-Associator Networks

3 hidden units

8 input units

8 output units

[0.12 0.82 0.67]
Internal representation

[0 0 1 0 0 0 0 0]

[0 0 1 0 0 0 0 0]

Input =

Target =

Auto-Associator Networks

Encoder network

Auto-Associator Networks

[0 0 1 0 0 0 0 0]

Encoder network

Input =

Auto-Associator Networks

Encoder network

[0 0 1 0 0 0 0 0]

[0.12 0.82 0.67]Output =

Input =

Auto-Associator Networks

Decoder network

Auto-Associator Networks

Decoder network

[0.12 0.82 0.67]Input =

Auto-Associator Networks

Decoder network

[0.12 0.82 0.67]

[0 0 1 0 0 0 0 0]Output =

Input =

Auto-Associator Demo

Using RAAM for Linguistic Processing

● Jerry Fodor and Zenon Pylyshyn published a strongly
negative critique of connectionism in 1988

● Connectionism and Cognitive Architecture: A Critical Analysis
(Chapter 12 of Mind Design II)

● They claimed that connectionist networks are incapable of
representing or processing linguistic structure

● Jordan Pollack developed the RAAM model to show how
networks could encode hierarchical symbol structures

● David Chalmers showed how networks could process
RAAM-encoded hierarchical structures holistically

● His network transformed sentences from active to passive
● See Chapter 7: “The Second AI Debate” in Artificial Minds

RAAM: Recursive Auto-Associative Memory

● Developed by Jordan Pollack
● A method of encoding hierarchically structured symbolic

information suitable for processing by a neural network
● How to represent the noun phrase “the cat in the hat” ?
● As a list of symbols: ((the cat) (in (the hat)))
● As a parse tree:

● How to encode this as a distributed numerical representation?

the cat in the hat

RAAM: Recursive Auto-Associative Memory

“the” = 1 0 0 0
“cat” = 0 1 0 0
“in” = 0 0 1 0
“hat” = 0 0 0 1

RAAM: Recursive Auto-Associative Memory

1 0 0 0 0 1 0 0
“the” “cat”

1 0 0 0 0 1 0 0

“the” “cat”

“the” = 1 0 0 0
“cat” = 0 1 0 0
“in” = 0 0 1 0
“hat” = 0 0 0 1

RAAM: Recursive Auto-Associative Memory

1 0 0 0 0 1 0 0
“the” “cat”

1 0 0 0 0 1 0 0

“the” “cat”

“the cat”

“the” = 1 0 0 0
“cat” = 0 1 0 0
“in” = 0 0 1 0
“hat” = 0 0 0 1

RAAM: Recursive Auto-Associative Memory

“the cat” =“the” = 1 0 0 0
“cat” = 0 1 0 0
“in” = 0 0 1 0
“hat” = 0 0 0 1

RAAM: Recursive Auto-Associative Memory

1 0 0 0 0 0 0 1
“the” “hat”

1 0 0 0 0 0 0 1

“the” “hat”

“the cat” =“the” = 1 0 0 0
“cat” = 0 1 0 0
“in” = 0 0 1 0
“hat” = 0 0 0 1

RAAM: Recursive Auto-Associative Memory

1 0 0 0 0 0 0 1
“the” “hat”

1 0 0 0 0 0 0 1

“the” “hat”

“the hat”

“the cat” =“the” = 1 0 0 0
“cat” = 0 1 0 0
“in” = 0 0 1 0
“hat” = 0 0 0 1

“the hat” =

RAAM: Recursive Auto-Associative Memory

“the cat” =“the” = 1 0 0 0
“cat” = 0 1 0 0
“in” = 0 0 1 0
“hat” = 0 0 0 1

“the hat” =

RAAM: Recursive Auto-Associative Memory

“the cat” =

“in” “the hat”

“in” “the hat”

“the” = 1 0 0 0
“cat” = 0 1 0 0
“in” = 0 0 1 0
“hat” = 0 0 0 1

“the hat” =

RAAM: Recursive Auto-Associative Memory

“the cat” =

“in” “the hat”

“in” “the hat”

“in the hat”

“the” = 1 0 0 0
“cat” = 0 1 0 0
“in” = 0 0 1 0
“hat” = 0 0 0 1

“in the hat” =
“the hat” =

RAAM: Recursive Auto-Associative Memory

“the cat” =“the” = 1 0 0 0
“cat” = 0 1 0 0
“in” = 0 0 1 0
“hat” = 0 0 0 1

“the hat” =

RAAM: Recursive Auto-Associative Memory

“the cat” =

“the cat” “in the hat”

“in the hat” =

“the cat” “in the hat”

“the” = 1 0 0 0
“cat” = 0 1 0 0
“in” = 0 0 1 0
“hat” = 0 0 0 1

“the hat” =

RAAM: Recursive Auto-Associative Memory

“the cat” =

“the cat” “in the hat”

“in the hat” =

“the cat” “in the hat”

“the” = 1 0 0 0
“cat” = 0 1 0 0
“in” = 0 0 1 0
“hat” = 0 0 0 1

“the cat in the hat”
[0.76 0.43 0.81 0.52]

RAAM: Decoding

Input = [0.76 0.43 0.81 0.52]

RAAM: Decoding

Input = [0.76 0.43 0.81 0.52]

RAAM: Decoding

Input = [0.76 0.43 0.81 0.52]

“the” “cat”

RAAM: Decoding

Input = [0.76 0.43 0.81 0.52]

“the” “cat” “in”

RAAM: Decoding

Input = [0.76 0.43 0.81 0.52]

“the” “cat” “in”

“the” “hat”

A Case Study of RAAM

● Joint work with my colleagues Doug Blank and Lisa Meeden
● Used a RAAM to encode simple 2- or 3-word sentences
● Analyzed the resulting distributed representations of words

and sentences learned by the network
● Examined the ability to perform computations holistically with

distributed representations of sentences
● Used a variation of RAAM called a sequential RAAM
● Similar in spirit to David Chalmers' experiments with sentence

passivization described in Chapter 7 of Artificial Minds

● A grammar for generating simple 2- or 3-word “sentences”
● 26 possible words, 1 special end-marker symbol
● 15 nouns:

tarzan, jane, boy, cheetah, chimp, rhino, bigfoot,
junglebeast, coconut, banana, berries, meat,
tree, rock, jeep

● 11 verbs:
flee, hunt, kill, chase, squish, move, eat, see, smell,
exist, swing

● Sample sentences:
tarzan see chimp
jane hunt
cheetah chase boy

A Case Study of RAAM

Lexical Categories

Sentence Templates

● Grammar highly constrains the set of valid sentences
– 18,252 possible 2- or 3-word sequences (= 262 + 263)
– only 341 valid sentences

● These constraints reflect the semantics of words
● Examples of ungrammatical sentences:

– banana chase junglebeast
– tarzan eat rock
– coconut see jane
– bigfoot exist
– squish move rhino

Semantic Constraints

● 27-bit localist representation of words
– 100000000000000000000000000 = tarzan
– 010000000000000000000000000 = jane
– 001000000000000000000000000 = boy

. . .
– 000000000000000000000000001 = end-marker

● This ensures that the representations of individual words
have no intrinsic similarity to each other

● From the network's point of view, each word is just an
abstract symbol, with no relation to any other symbol

● Sentences are presented to the network one word at a time,
with no information about sentence structure (no parse tree)

Word Representations

Sequential RAAM Architecture

27 word units

27 word units 30 context units

30 context units

30 hidden units

Encoding Sentences
“tarzan see chimp”

Encoding Sentences
“tarzan see chimp”

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

tarzan

tarzan

[empty context]

[empty context]

Encoding Sentences
“tarzan see chimp”

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

tarzan

tarzan

[empty context]

[empty context]

[tarzan]

Encoding Sentences
“tarzan see chimp”

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0

see

see

[tarzan]

[tarzan]

Encoding Sentences
“tarzan see chimp”

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0

see

see

[tarzan]

[tarzan]

[[tarzan] see]

Encoding Sentences
“tarzan see chimp”

0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

chimp

chimp

[[tarzan] see]

[[tarzan] see]

Encoding Sentences
“tarzan see chimp”

0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

chimp

chimp

[[tarzan] see]

[[tarzan] see]

[[[tarzan] see] chimp]

Decoding Sentences
= ?

Decoding Sentences
= ?

Decoding Sentences

0 0 0 1 0 0 0 0 0 0

chimp

= ?

Decoding Sentences
= ?

chimp

Decoding Sentences
= ?

chimp

Decoding Sentences

0 0 0 0 0 0 1 0 0 0

see

= ?

chimp

Decoding Sentences
= ?

chimp see

Decoding Sentences
= ?

chimp see

Decoding Sentences

1 0 0 0 0 0 0 0 0 0

tarzan [empty]

= ?

chimp see

Decoding Sentences

chimp see tarzan [empty]

= ?

Decoding Sentences

“tarzan see chimp”

= ?

chimp see tarzan [empty]

● Test 1: How well can the trained network encode and decode
valid sentences?

● TRAINING set: 100 randomly-chosen valid sentences
– presented in random order for ~ 21,000 training cycles

● TESTING set: 100 different valid sentences
– Task: encode a sentence and then decode it to see if the

resulting sentence is the same
– If the correct word unit is less than 0.5, or is not the most

highly activated unit, the network's response is an error
– 100% of TRAINING sentences passed
– 80% of TESTING sentences passed
– Incorrect words were usually still the right grammatical

type (e.g. the network produced jane instead of jeep)

Experiments

● Test 2: How well can the network encode and decode
ungrammatical sentences?

● Task: encode and then decode 20 ungrammatical sentences
– tarzan chase bigfoot (tarzan not NOUN-AGGRESSIVE)
– bigfoot exist (bigfoot not NOUN-REAL)
– berries chase meat (berries not NOUN-AGGRESSIVE,

meat not NOUN-ANIMATE)
– eat tree eat (sentence not of the form NOUN VERB NOUN)

● Only 35% were correctly decoded
– Of these, 86% were only slightly ungrammatical

● Network had difficulty processing ungrammatical sentences

Experiments

● Test 3: Analyze the internal representations of words
learned by the network

● Step 1: create a composite word representation for each
of the 286 words in the TRAINING set sentences

● Step 2: perform a cluster analysis of the composite word
patterns in order to see their similarity structure

● Remember:
– no explicit information was ever provided to the network

about the grammar, or about the structure of sentences
– sentences were presented to the network sequentially,

as a single unbroken stream of words (like how people
experience spoken language)

Experiments

Composite Word Representations
“tarzan see chimp”

0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

chimp

chimp

[[tarzan] see]

[[tarzan] see]

[[[tarzan] see] chimp]

Composite Word Representations
“rhino chase chimp”

0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

chimp

chimp

[[rhino] chase]

[[rhino] chase]

[[[rhino] chase] chimp]

Composite Word Representations
“chimp eat banana”

0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

chimp

chimp

[empty context]

[empty context]

[chimp]

Composite Word Representations

= [chimp]

= [[[rhino] chase] chimp]

= [[[tarzan] see] chimp]

. . .

average =

= composite word representation of chimp

This pattern reflects all of the different contexts in which
the word chimp is used in the TRAINING set sentences

Composite Word Representations

Composite Word Representations

● The network has learned
the distinction between
nouns and verbs

● 6th pattern value codes for
verbs (1) or nouns (0)

● The only exception is
jeep, which was under-
represented in the
TRAINING sentences

● A cluster analysis reveals
subtler similarities and
differences among these
word representations

noun/verb distinction

Cluster Analysis

x

y

A
B

C

D

E

A 0.69 0.82
B 0.76 0.77
C 0.71 0.43
D 0.28 0.55
E 0.17 0.32

x y

● A geometric method for visualizing the similarity structure of
patterns in a multi-dimensional space

Cluster Analysis

x

y

A
B

C

D

E

A 0.69 0.82
B 0.76 0.77
C 0.71 0.43
D 0.28 0.55
E 0.17 0.32

x y

● A geometric method for visualizing the similarity structure of
patterns in a multi-dimensional space

Find the shortest distance
between two points

Cluster Analysis

x

y

A
B

C

D

E

A

B

A 0.69 0.82
B 0.76 0.77
C 0.71 0.43
D 0.28 0.55
E 0.17 0.32

x y

+

● A geometric method for visualizing the similarity structure of
patterns in a multi-dimensional space

Cluster Analysis

x

y

A
B

C

D

E

A

B

A 0.69 0.82
B 0.76 0.77
C 0.71 0.43
D 0.28 0.55
E 0.17 0.32

x y

● A geometric method for visualizing the similarity structure of
patterns in a multi-dimensional space

+

Cluster Analysis

x

y

A
B

C

D

E

A

B

D

E

A 0.69 0.82
B 0.76 0.77
C 0.71 0.43
D 0.28 0.55
E 0.17 0.32

x y

+

+

● A geometric method for visualizing the similarity structure of
patterns in a multi-dimensional space

Cluster Analysis

x

y

A
B

C

D

E

A

B

D

E

A 0.69 0.82
B 0.76 0.77
C 0.71 0.43
D 0.28 0.55
E 0.17 0.32

x y

● A geometric method for visualizing the similarity structure of
patterns in a multi-dimensional space

+

+

Cluster Analysis

x

y

A
B

C

D

E

A

B

C

D

E

A 0.69 0.82
B 0.76 0.77
C 0.71 0.43
D 0.28 0.55
E 0.17 0.32

x y

+

+

● A geometric method for visualizing the similarity structure of
patterns in a multi-dimensional space

Cluster Analysis

x

y

A
B

C

D

E

A

B

C

D

E

A 0.69 0.82
B 0.76 0.77
C 0.71 0.43
D 0.28 0.55
E 0.17 0.32

x y

● A geometric method for visualizing the similarity structure of
patterns in a multi-dimensional space

+

+

Cluster Analysis

x

y

A
B

C

D

E

A

B

C

D

E

A 0.69 0.82
B 0.76 0.77
C 0.71 0.43
D 0.28 0.55
E 0.17 0.32

x y

+

● A geometric method for visualizing the similarity structure of
patterns in a multi-dimensional space

Cluster Analysis of Word Representations

Cluster Analysis of Word Representations

Cluster Analysis of Word Representations

● Good but not perfect
separation of nouns/verbs

● Squishable foods (banana,
berries) clustered together

● Non-squishable foods (meat,
coconut) clustered together

● Aggressive nouns (rhino,
bigfoot) clustered together

● Training on 300 sentences
instead of 100 reduces the
number of exceptions to five

● Word representations reflect
the structure of the grammar

● Test 4: Can the network process sentences holistically?
● Task: transform “chase” sentences into “flee” sentences

NOUN1 chase NOUN2  NOUN2 flee NOUN1
● Use a separate neural network to learn this transformation

– ordinary backpropagation network (not a RAAM)
– operates directly on RAAM-encoded sentences
– does not decode sentences into their constituent parts
– input: a pattern that encodes a “chase” sentence
– output: a pattern that encodes the transformed sentence

Experiments

Example: “cheetah chase tarzan”

Transformation Network

● Test 4: Can the network process sentences holistically?
● Step 1:

– Generated a new training corpus for the RAAM
● 20 chase/flee sentence pairs
● 110 other valid sentences

– Trained RAAM as before for ~ 3700 training cycles
– Encoded the 20 chase/flee sentence pairs, plus 4 novel

chase/flee sentence pairs, using the trained RAAM

Experiments

● Test 4: Can the network process sentences holistically?
● Step 2:

– Trained transformation network on 16 of the 24 chase/flee
sentence pairs for ~ 75 training cycles

– Tested transformation network on the remaining 8
chase/flee sentence pairs

● 4 of these pairs had been used to train the RAAM
● 4 of these pairs were completely novel

● Results:
– 100% correct on RAAM-trained sentence pairs (4 out of 4)
– 75% correct on novel sentence pairs (3 out of 4)
– Error: junglebeast chase chimp  chimp flee cheetah

Experiments

● RAAM networks can represent compositional linguistic
structures such as words, sentences, and parse trees

● These representations can be highly distributed
● The similarity structure of these representations reflects the

way words are used in context, even though no explicit
knowledge of the grammar was provided to the network

● Neural networks can be trained to process representations
holistically, without having to first break them up into their
constituent parts

● This is fundamentally different from the way in which
symbolic AI programs process linguistic structures

● Fodor and Pylyshyn may have seriously underestimated
the potential of connectionism for linguistic processing

Summary

