Example of a Simple Genetic Algorithm

8-bit chromosomes
Fitness function $f(x)=$ number of 1 bits in chromosome
Population size $=4$
Crossover probability $=70 \%$
Mutation probability per bit $=0.1 \%$

Chromosome	Fitness
A: $\mathbf{0 0 0 0 0 1 1 0}$	2
B: $\mathbf{1 1 1 0 1 1 1 0}$	6
C: $\mathbf{0 0 1 0 0 0 0 0}$	1
D: $\mathbf{0 0 1 1 0 1 0 0}$	3

Average fitness of population $=12 / 4=3.0$

Fitness-proportionate selection ("roulette-wheel sampling")

1. B and C selected, crossover not performed
2. B mutated
$B: 11101110 \longrightarrow B^{\prime}: 01101110$
3. B and D selected, crossover performed

B:
4. E mutated
$\mathrm{E}: \mathbf{1 0 1 1 0 1 0 0} \longrightarrow \mathrm{E}^{\prime}: \mathbf{1 0 1 1 0 0 0 0}$
New population:

Chromosome	Fitness
$B^{\prime}: \mathbf{0 1 1 0 1 1 1 0}$	5
C:00100000	1
$\mathrm{E}^{\prime}: \mathbf{1 0 1 1 0 0 0 0}$	3
F: 01101110	5

Best-fit string from previous population lost, but...Average fitness of population now 14/4 $=3.5$

