"An autonomous system which exists in the physical world, can sense its environment, and can act on it to achieve some goals" —Maja Matarić

 "An autonomous system which exists in the physical world, can sense its environment, and can act on it to achieve some goals" —Maja Matarić

 "An autonomous system which exists in the physical world, can sense its environment, and can act on it to achieve some goals" —Maja Matarić

 "An autonomous system which exists in the physical world, can sense its environment, and can act on it to achieve some goals" —Maja Matarić

 "An autonomous system which exists in the physical world, can sense its environment, and can act on it to achieve some goals" —Maja Matarić

 "An autonomous system which exists in the physical world, can sense its environment, and can act on it to achieve some goals" —Maja Matarić

Robots Have Many Uses

Welding

Assembly

Pumping gas

Eating cars

Dancing

Packaging

• W. Grey Walter's **Tortoises** (1950's)

• W. Grey Walter's **Tortoises** (1950's)

• Shakey

- Developed at Stanford (1969)
- Bump sensors
- Camera
- Lived in a special indoor world with a white floor and black objects (balls, pyramids, etc.)

- Stanford Cart (1977)
- Developed by Hans Moravec
- Vision-based navigation
- Path planning
- Operated in "Cartland"

Cartland

Cartland

- CMU Rover (1983)
- Developed by Hans Moravec at CMU
- Camera and ultrasound sensors
- Navigation and path planning

Traditional Robotics

- Knowledge-based approach
- Maintain an accurate internal model of the world
- "Sense ⇒ model ⇒ plan ⇒ action" cycle
- Poor performance in real-time complex environments
- Complex behavior results from complex internal algorithms
- Traditional task decomposition:

Behavior-Based Robotics

- No explicit internal representations
- "The world is its own model"
- Direct sensory-motor couplings
- Distributed, decentralized organization
- Good performance in real-time complex environments
- Complex behavior emerges from interactions between simple internal processes and the environment

Behavior-Based Robotics

• Behavior-based task decomposition:

Subsumption Architecture

- Layers of control
- Incremental, evolutionary approach
- Suppression and inhibition of control signals between layers

Subsumption Architecture

• Layers consist of collections of Finite State Machines

- Example: explore environment, seek out "interesting" places while avoiding obstacles
 - Layer 0: avoid obstacles
 - Layer 1: wander around aimlessly
 - Layer 2: seek out interesting places

Layer 0: Avoid obstacles

Layer 1: Wander around aimlessly

Layer 2: Seek out interesting places

Some Famous Behavior-Based Robots

Genghis

Kismet

COG

Behavior-Based Robotics

- Rodney Brooks and students, MIT (1980s) •
- Distributed, parallel architecture
- Emergent behaviors

Hannibal

The Cog Project

(Rodney Brooks, MIT)

The Cog Project

Kismet

(Rodney Brooks, Cynthia Breazeal, MIT)

Roomba Vacuuming Robot

(Rodney Brooks, iRobot Corporation)