"Mathematical Monsters"

• What is the value of the infinite sum:

 $1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + \dots$

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = ?$$

• What is the value of the infinite sum:

 $1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + \dots$

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = ?$$

1/2 = 0.5

• What is the value of the infinite sum:

 $1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + \dots$

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = ?$$

• What is the value of the infinite sum:

 $1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + \dots$

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = ?$$

1/2 + 1/4 + 1/8 = 0.875

• What is the value of the infinite sum:

 $1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + \dots$

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = ?$$

1/2 + 1/4 + 1/8 + 1/16 = 0.9375

• What is the value of the infinite sum:

 $1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + \dots$

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = ?$$

1/2 + 1/4 + 1/8 + 1/16 + 1/32 = 0.96875

• What is the value of the infinite sum:

 $1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + \dots$

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = ?$$

1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 = 0.984375

• What is the value of the infinite sum:

 $1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + \dots$

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = ?$$

1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 = 0.9921875

• What is the value of the infinite sum:

 $1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + \dots$

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = 1.0000000$$

 $1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 + \dots$

These endpoints are NOT removed

These endpoints are NOT removed

As <i>n</i> g	oes to infinit	ty, (2/3	B) ⁿ goes t	o 0
n	(2/3) ⁿ	n	(2/3) ⁿ	
0	1.0000000	16	0.0015224	
1	0.6666667	17	0.0010150	
2	0.444444	18	0.0006766	
3	0.2962963	19	0.0004511	
4	0.1975309	20	0.0003007	
5	0.1316872	21	0.0002005	
6	0.0877915	22	0.0001337	
7	0.0585277	23	0.0000891	
8	0.0390184	24	0.0000594	
9	0.0260123	25	0.0000396	
10	0.0173415	26	0.0000264	
11	0.0115610	27	0.0000176	
12	0.0077073	28	0.0000117	
13	0.0051382	29	0.0000078	
14	0.0034255	30	0.0000052	
15	0.0022837		etc	

As *n* goes to infinity, $(2/3)^n$ goes to 0

- The Cantor Set is defined as the **limit** of this process
- So the total "length" of the Cantor Set is **precisely zero**!
- Even though it contains an **infinite** number of points!

	As <i>n</i> goes	to infin	ity, (4/3) <i>'</i>	' goes to	infinity
n	(4/3) ⁿ	n	(4/3) ⁿ	n	(4/3) ⁿ
(0 1.000	16	99.775	32	9954.961
	1 1.333	17	133.033	33	13273.282
	2 1.778	18	177.377	34	17697.709
	3 2.370	19	236.503	35	23596.945
2	4 3.160	20	315.337	36	31462.593
Ę	5 4.214	21	420.449	37	41950.125
6	5 5.619	22	560.599	38	55933.499
7	7 7.492	23	747.465	39	74577.999
8	9.989	24	996.620	40	99437.332
Q	9 13.318	25	1328.827	41	132583.110
1() 17.758	26	1771.769	42	176777.480
11	23.677	27	2362.359	43	235703.306
12	2 31.569	28	3149.812	44	314271.075
13	3 42.092	29	4199.749	45	419028.100
14	4 56.123	30	5599.666	46	558704.133
15	5 74.831	31	7466.221	47	744938.844
					<i>etc</i>

As *n* goes to infinity, $(4/3)^n$ goes to infinity

- The Koch Curve is defined as the **limit** of this process
- So the total length of the Koch Curve is infinite
- The perimeter of a Koch Snowflake is also **infinite**, but it encloses a **finite area**

• A 1-inch wide Koch curve iterated for 100 steps would be over **49 million miles long** if fully stretched out!

- $(4/3)^{100}$ = 3,117,982,410,207.9 inches
 - = 259,831,867,517.3 feet
 - = 49,210,580.9 miles

Space-Filling Curves

Peano Curve

Space-Filling Curves

Sierpinski Arrowhead

 Can be drawn as a single continuous line that never crosses itself

Computer Demos

- Peano Curve
- Dragon Curve
- Sierpinski Arrowhead

Are these curves **1-dimensional** or **2-dimensional**?