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● Logistic Map with R = 4.0
● A chaotic trajectory fills the entire 1-dimensional state space
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● We need to consider state spaces with more than 1 dimension

– Stationary object on a flat surface (2-D)

– Moving ball on a flat surface (4-D)

– Earth + Moon + satellite system (18-D)

● State variables summarize all relevant information about the 
entire system (position, velocity, etc. of each component)

● Together the state variables represent a single abstract point 
in a multi-dimensional state space
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● Studied by Edward Lorenz in 1963 as a simple model of weather

 x' = Ay – Ax

 y' = Bx – y – zx

 z' = xy – Cz

● Idealized model of convective fluid motion in the atmosphere
● A, B, C are constants that reflect physical properties of the fluid

● System is chaotic when A = 10, B = 28, C = 8/3 (2.6667) 
● System exhibits sensitive dependence on initial conditions
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 y' = Bx – y – zx

 z' = xy – Cz

● x, y, and z are the state variables

 x is proportional to the intensity of convective motion
y is proportional to the horizontal temperature gradient
   between ascending and descending air currents
z is proportional to the vertical temperature gradient

● x', y', and z' are the rates at which x, y, and z are changing
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● The rising of hot gas or liquid
● Nonlinearities due to friction and viscosity

Convective Fluid Motion
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● The Lorenz equations correspond exactly to a real mechanical 
device: a waterwheel

● Like a slice through a rotating convection cylinder
● Both systems have an external energy source (heat / water)
● Both systems dissipate energy
● Water flows in from top, and buckets leak water at a fixed rate
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The Lorenz Waterwheel

https://www.youtube.com/watch?v=7A_rl-DAmUE
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● Long-term behavior of the system in state space is confined to 
the surface of the “butterfly”

● An example of a “strange attractor” in 3-D

● State trajectory never intersects itself (it is infinitely dense)

● How long the trajectory stays on each “wing” is unpredictable

● In 1999, Warwick Tucker in Sweden proved mathematically
that the Lorenz attractor really exists!
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The Sound of the Lorenz Attractor

Each axis (x, y, and z) is mapped to a different instrument
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The Logistic Map

Smaller values of x get “stretched”

 0.2 → 0.64
0.4 → 0.96
0.5 → 1.0
0.6 → 0.96

Larger values of x get “squeezed”

 0.8 → 0.64
0.9 → 0.36
0.95 → 0.19

stretched squeezed
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The Logistic Map

The space gets “folded”

[0 ... 0.5] → [0 ... 1]

[0.5 ... 1] → [1 ... 0]

Repeated iterations stretch, 
squeeze, and fold the space, like 
saltwater taffy, or pastry dough

This is hard to visualize with
a 1-dimensional state space
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● 2-dimensional discrete system with state variables x and y

 xt+1 = 1 – Axt
2 + yt

 yt+1 = Bxt

● A = 1.4,  B = 0.3  (analogous to the logistic map R parameter)
● The form of the equations given in CBN Chapter 11 are slightly 

different, but mathematically equivalent to the above equations
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How the Space Gets Transformed

Bend up:  (x, y) → (x, 1 – Ax2 + y)  
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How the Space Gets Transformed

Contract:  (x, y) → (Bx, y)  
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How the Space Gets Transformed

Reflect:  (x, y) → (y, x)  
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Stretching and Folding a Square Region
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Stretching and Folding the Attractor Itself
Starting shape:
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● Fractal structure of attractor
● Bifurcation diagram for parameter A (holding B = 0.3 constant)
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Regions of Periodic Behavior
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