

Reading for this week and next

● Complexity: a Guided Tour

– Chapters 5-8: background material on evolution
and genetics

– Chapter 9: genetic algorithms (“Robby the Robot”)

● The Computational Beauty of Nature
– Sections 20.1 through 20.3: genetic algorithms

Reading for this week and next

● Complexity: a Guided Tour

– Chapters 5-8: background material on evolution
and genetics

– Chapter 9: genetic algorithms (“Robby the Robot”)

● The Computational Beauty of Nature
– Sections 20.1 through 20.3: genetic algorithms

Universal Turing Machines

Universal Turing Machines

Universal Turing Machines

● A special TM, called a Universal Turing Machine, can
simulate any other Turing machine

TM1

UTM

111001 000110Input data for TM1 Output

111001

111010100101011010...00111
Coded description of TM1

000110 Output
Input data for TM1

Universal Turing Machines

● A special TM, called a Universal Turing Machine, can
simulate any other Turing machine

TM1

UTM

111001 000110Input data for TM1 Output

111001

111010100101011010...00111
Coded description of TM1

000110 Output
Input data for TM1

How to Encode a Turing Machine?

● States: s1, s2, s3, halt → 0, 00, 000, 0000, etc.
● Symbols: x, y, z → 0, 00, 000, etc.
● Moves: Right, Left, None → 0, 00, 000
● Rules:

 s1 y y R s3 → 0 1 00 1 00 1 0 1 000

 s2 x z L halt → 00 1 0 1 000 1 00 1 0000

111 0 1 00 1 00 1 0 1 000 11 00 1 0 1 000 1 00 1 0000 111

How to Encode a Turing Machine?

● States: s1, s2, s3, halt → 0, 00, 000, 0000, etc.
● Symbols: x, y, z → 0, 00, 000, etc.
● Moves: Right, Left, None → 0, 00, 000
● Rules:

 s1 y y R s3 → 0 1 00 1 00 1 0 1 000

 s2 x z L halt → 00 1 0 1 000 1 00 1 0000

111 0 1 00 1 00 1 0 1 000 11 00 1 0 1 000 1 00 1 0000 111

How to Encode a Turing Machine?

● States: s1, s2, s3, halt → 0, 00, 000, 0000, etc.
● Symbols: x, y, z → 0, 00, 000, etc.
● Moves: Right, Left, None → 0, 00, 000
● Rules:

 s1 y y R s3 → 0 1 00 1 00 1 0 1 000

 s2 x z L halt → 00 1 0 1 000 1 00 1 0000

111 0 1 00 1 00 1 0 1 000 11 00 1 0 1 000 1 00 1 0000 111

1110100100101000110010100010010000111

How to Encode a Turing Machine?

● States: s1, s2, s3, halt → 0, 00, 000, 0000, etc.
● Symbols: x, y, z → 0, 00, 000, etc.
● Moves: Right, Left, None → 0, 00, 000
● Rules:

 s1 y y R s3 → 0 1 00 1 00 1 0 1 000

 s2 x z L halt → 00 1 0 1 000 1 00 1 0000

111 0 1 00 1 00 1 0 1 000 11 00 1 0 1 000 1 00 1 0000 111

1110100100101000110010100010010000111

How to Encode a Turing Machine?

● States: s1, s2, s3, halt → 0, 00, 000, 0000, etc.
● Symbols: x, y, z → 0, 00, 000, etc.
● Moves: Right, Left, None → 0, 00, 000
● Rules:

 s1 y y R s3 → 0 1 00 1 00 1 0 1 000

 s2 x z L halt → 00 1 0 1 000 1 00 1 0000

111 0 1 00 1 00 1 0 1 000 11 00 1 0 1 000 1 00 1 0000 111

= 125,176,464,519 in decimal

How to Encode a Turing Machine?

● States: s1, s2, s3, halt → 0, 00, 000, 0000, etc.
● Symbols: x, y, z → 0, 00, 000, etc.
● Moves: Right, Left, None → 0, 00, 000
● Rules:

 s1 y y R s3 → 0 1 00 1 00 1 0 1 000

 s2 x z L halt → 00 1 0 1 000 1 00 1 0000

111 0 1 00 1 00 1 0 1 000 11 00 1 0 1 000 1 00 1 0000 111

= 125,176,464,519 in decimal

Example: The “Binary Inverter” TM

● States: s1, halt → 0, 00
● Symbols: 0, 1, _ → 0, 00, 000
● Moves: Right, Left, None → 0, 00, 000
● Rules:

 s1 0 1 R s1 → 0 1 0 1 00 1 0 1 0
s1 1 0 R s1 → 0 1 00 1 0 1 0 1 0

 s1 _ _ * halt → 0 1 000 1 000 1 000 1 00

111 0101001010 11 0100101010 11 0100010001000100 111

 1110101001010110100101010110100010001000100111

Example: The “Binary Inverter” TM

● States: s1, halt → 0, 00
● Symbols: 0, 1, _ → 0, 00, 000
● Moves: Right, Left, None → 0, 00, 000
● Rules:

 s1 0 1 R s1 → 0 1 0 1 00 1 0 1 0
s1 1 0 R s1 → 0 1 00 1 0 1 0 1 0

 s1 _ _ * halt → 0 1 000 1 000 1 000 1 00

111 0101001010 11 0100101010 11 0100010001000100 111

 1110101001010110100101010110100010001000100111

Example: The “Binary Inverter” TM

● States: s1, halt → 0, 00
● Symbols: 0, 1, _ → 0, 00, 000
● Moves: Right, Left, None → 0, 00, 000
● Rules:

 s1 0 1 R s1 → 0 1 0 1 00 1 0 1 0
s1 1 0 R s1 → 0 1 00 1 0 1 0 1 0

 s1 _ _ * halt → 0 1 000 1 000 1 000 1 00

111 0101001010 11 0100101010 11 0100010001000100 111

 = 64,414,398,685,735 in decimal

Example: The “Binary Inverter” TM

● States: s1, halt → 0, 00
● Symbols: 0, 1, _ → 0, 00, 000
● Moves: Right, Left, None → 0, 00, 000
● Rules:

 s1 0 1 R s1 → 0 1 0 1 00 1 0 1 0
s1 1 0 R s1 → 0 1 00 1 0 1 0 1 0

 s1 _ _ * halt → 0 1 000 1 000 1 000 1 00

111 0101001010 11 0100101010 11 0100010001000100 111

 = 64,414,398,685,735 in decimal

Your Turn

● States: s1, halt → 0, 00
● Symbols: 0, 1, _ → 0, 00, 000
● Moves: Right, Left, None → 0, 00, 000
● Rules:

 s1 0 0 R s1 → 0 1 0 1 0 1 0 1 0
s1 1 1 L s1 → 0 1 00 1 00 1 00 1 0

 s1 _ _ * halt → 0 1 000 1 000 1 000 1 00

111 010101010 11 010010010010 11 0100010001000100 111

11101010101011010010010010110100010001000100111

= 129,014,683,017,767 in decimal

Your Turn

● States: s1, halt → 0, 00
● Symbols: 0, 1, _ → 0, 00, 000
● Moves: Right, Left, None → 0, 00, 000
● Rules:

 s1 0 0 R s1 → 0 1 0 1 0 1 0 1 0
s1 1 1 L s1 → 0 1 00 1 00 1 00 1 0

 s1 _ _ * halt → 0 1 000 1 000 1 000 1 00

111 010101010 11 010010010010 11 0100010001000100 111

11101010101011010010010010110100010001000100111

= 129,014,683,017,767 in decimal

UTM
111001

111010100101011010...00111

 64,414,398,685,735

000110

● UTM's own internal rules are fixed

● Coded description acts as a program that UTM executes
on the input string 111001

● Or we could say that the number 64,414,398,685,735
acts on the input 111001 to produce the output 000110

The Universal Machine

UTM
111001

111010100101011010...00111

 64,414,398,685,735

000110

● UTM's own internal rules are fixed

● Coded description acts as a program that UTM executes
on the input string 111001

● Or we could say that the number 64,414,398,685,735
acts on the input 111001 to produce the output 000110

The Universal Machine

The Universal Machine

I am thinking about something much more important than
bombs. I am thinking about computers.

—John Von Neumann, 1946

The fact that there is a universal machine to imitate all other
machines...was understood by von Neumann and a few others.
And when he understood it, then he knew what we could do.

—Julian Bigelow, chief engineer of the IAS Electronic Computer Project

Before Turing, things were done to numbers. After Turing,
numbers began doing things.

—George Dyson, Turing's Cathedral

The Universal Machine

I am thinking about something much more important than
bombs. I am thinking about computers.

—John Von Neumann, 1946

The fact that there is a universal machine to imitate all other
machines...was understood by von Neumann and a few others.
And when he understood it, then he knew what we could do.

—Julian Bigelow, chief engineer of the IAS Electronic Computer Project

Before Turing, things were done to numbers. After Turing,
numbers began doing things.

—George Dyson, Turing's Cathedral

The Universal Machine

● The existence of the UTM is what makes computers
fundamentally different from other machines

● Computers are the only machines that can simulate any
other machine to an arbitrary degree of accuracy

● Universality is why computers have taken over the world!

The Universal Machine

● The existence of the UTM is what makes computers
fundamentally different from other machines

● Computers are the only machines that can simulate any
other machine to an arbitrary degree of accuracy

● Universality is why computers have taken over the world!

The Universal Machine

Even the word “cellphone” is a misnomer. They could just as
easily be called cameras, video players, Rolodexes, calendars,
tape recorders, libraries, diaries, albums, televisions, maps or
newspapers.

—Chief Justice John Roberts Jr.,
June 25, 2014 Supreme Court ruling that police need
warrants to search cellphones of people under arrest

The Universal Machine

Even the word “cellphone” is a misnomer. They could just as
easily be called cameras, video players, Rolodexes, calendars,
tape recorders, libraries, diaries, albums, televisions, maps or
newspapers.

—Chief Justice John Roberts Jr.,
June 25, 2014 Supreme Court ruling that police need
warrants to search cellphones of people under arrest

The Universal Machine

● Are Turing Machines really as powerful as real computers?

– Unlimited memory (infinite tape)

– Speed / efficiency is irrelevant

– Any type of data can be encoded in binary
(numbers, text, pictures, sounds, movies, etc.)

The Universal Machine

● Are Turing Machines really as powerful as real computers?

– Unlimited memory (infinite tape)

– Speed / efficiency is irrelevant

– Any type of data can be encoded in binary
(numbers, text, pictures, sounds, movies, etc.)

The Universal Machine

● All proposed models of computation have turned out
to be exactly equivalent to one another:

– Turing machines
– Lambda calculus
– Recursive functions
– Post production systems
– Random access machines
– All programming languages (Python, Javascript, C, ...)
– etc. etc.

The Universal Machine

● All proposed models of computation have turned out
to be exactly equivalent to one another:

– Turing machines
– Lambda calculus
– Recursive functions
– Post production systems
– Random access machines
– All programming languages (Python, Javascript, C, ...)
– etc. etc.

The Universal Machine

● Church-Turing Thesis:

Anything that is computable can be computed
by a suitably programmed Turing machine

● Choice of programming substrate doesn't matter

● What matters is the organization and flow of information

● You can build a computer out of Tinkertoys if you like!

The Universal Machine

● Church-Turing Thesis:

Anything that is computable can be computed
by a suitably programmed Turing machine

● Choice of programming substrate doesn't matter

● What matters is the organization and flow of information

● You can build a computer out of Tinkertoys if you like!

Tinkertoy Computer for Playing Tic-Tac-Toe

Tinkertoy Computer for Playing Tic-Tac-Toe

Tinkertoy Computer for Playing Tic-Tac-Toe

Tinkertoy Computer for Playing Tic-Tac-Toe

The Limits of Computation

● Is there anything a TM cannot compute, in principle?
● YES! No TM can infallibly predict whether another TM

will get stuck in an infinite loop when run on some input

● Example: s1 0 0 R s1 “Looper TM”
s1 1 1 L s1
s1 _ _ * halt

● Input: 00000 Result: halts after 5 steps

● Input: 000111 Result: never halts (infinite loop)

The Limits of Computation

● Is there anything a TM cannot compute, in principle?
● YES! No TM can infallibly predict whether another TM

will get stuck in an infinite loop when run on some input

● Example: s1 0 0 R s1 “Looper TM”
s1 1 1 L s1
s1 _ _ * halt

● Input: 00000 Result: halts after 5 steps

● Input: 000111 Result: never halts (infinite loop)

“Yes, that TM will halt
 on that input”

Halt-predictor
 TM

11101010101011010010010010110100010001000100111

00000

The Halting Problem

Coded description of “Looper” TM

“No, that TM will never halt
 on that input”

Halt-predictor
 TM

11101010101011010010010010110100010001000100111

000111

Coded description of “Looper” TM

“Yes, that TM will halt
 on that input”

Halt-predictor
 TM

11101010101011010010010010110100010001000100111

00000

The Halting Problem

Coded description of “Looper” TM

“No, that TM will never halt
 on that input”

Halt-predictor
 TM

11101010101011010010010010110100010001000100111

000111

Coded description of “Looper” TM

“Yes, M will halt”

“No, M will never halt”

Halt-predictor
 TM

Coded description of M

Input data for M

● The task of deciding in advance if an arbitrary computation
will ever terminate cannot be described computationally

● This was proven by Turing in his 1936 paper

The Halting Problem

“Yes, it works perfectly”

“No, there's a bug”

Bug-detector
 program

Computer program

Input data for program

“Yes, M will halt”

“No, M will never halt”

Halt-predictor
 TM

Coded description of M

Input data for M

● The task of deciding in advance if an arbitrary computation
will ever terminate cannot be described computationally

● This was proven by Turing in his 1936 paper

The Halting Problem

“Yes, it works perfectly”

“No, there's a bug”

Bug-detector
 program

Computer program

Input data for program

Outline of Turing's Argument

(1) Assume for now that the Halt-predictor TM actually exists

“Yes, M will halt
 on that input”

“No, M will not halt
 on that input”

Halt-predictor
 TM

 Description
of machine M

 Input data
for machine M

Outline of Turing's Argument

(1) Assume for now that the Halt-predictor TM actually exists

“Yes, M will halt
 on that input”

“No, M will not halt
 on that input”

Halt-predictor
 TM

 Description
of machine M

 Input data
for machine M

Outline of Turing's Argument

(1) Assume for now that the Halt-predictor TM actually exists

(2) Construct a new TM called Paradox that uses Halt-predictor

“Yes, M will halt
 on that input”

“No, M will not halt
 on that input”

Halt-predictor
 TM

 Description
of machine M

Go into an
INFINITE LOOP HALT

 Description
of machine M

 Description
of machine M

Paradox TM

Outline of Turing's Argument

(1) Assume for now that the Halt-predictor TM actually exists

(2) Construct a new TM called Paradox that uses Halt-predictor

“Yes, M will halt
 on that input”

“No, M will not halt
 on that input”

Halt-predictor
 TM

 Description
of machine M

Go into an
INFINITE LOOP HALT

 Description
of machine M

 Description
of machine M

Paradox TM

Outline of Turing's Argument

“Yes, M will halt
 on that input”

“No, M will not halt
 on that input”

Halt-predictor
 TM

 Looper TM
11101010101...

Go into an
INFINITE LOOP HALT

 Looper TM
11101010101...

 Looper TM
11101010101...

Paradox TM

Example: we could feed Paradox the Looper TM description

(1) Assume for now that the Halt-predictor TM actually exists

(2) Construct a new TM called Paradox that uses Halt-predictor

Outline of Turing's Argument

“Yes, M will halt
 on that input”

“No, M will not halt
 on that input”

Halt-predictor
 TM

 Looper TM
11101010101...

Go into an
INFINITE LOOP HALT

 Looper TM
11101010101...

 Looper TM
11101010101...

Paradox TM

Example: we could feed Paradox the Looper TM description

(1) Assume for now that the Halt-predictor TM actually exists

(2) Construct a new TM called Paradox that uses Halt-predictor

Outline of Turing's Argument

(3) Write down the binary description P of the Paradox TM

“Yes, M will halt
 on that input”

“No, M will not halt
 on that input”

Halt-predictor
 TM

 Description
of machine M

Go into an
INFINITE LOOP HALT

 Description
of machine M

 Description
of machine M

Paradox TM

P = 11100011100110010100101010101000111001 . . .

Outline of Turing's Argument

(3) Write down the binary description P of the Paradox TM

“Yes, M will halt
 on that input”

“No, M will not halt
 on that input”

Halt-predictor
 TM

 Description
of machine M

Go into an
INFINITE LOOP HALT

 Description
of machine M

 Description
of machine M

Paradox TM

P = 11100011100110010100101010101000111001 . . .

Outline of Turing's Argument

(3) Write down the binary description P of the Paradox TM

(4) Feed the description P to the Paradox TM itself

Halt-predictor
 TM

Go into an
INFINITE LOOP HALT

P

Paradox TM

P = 11100011100110010100101010101000111001 . . .

P

P

“Yes, P will halt
 on input P ”

“No, P will not halt
 on input P ”

Outline of Turing's Argument

(3) Write down the binary description P of the Paradox TM

(4) Feed the description P to the Paradox TM itself

Halt-predictor
 TM

Go into an
INFINITE LOOP HALT

P

Paradox TM

P = 11100011100110010100101010101000111001 . . .

P

P

“Yes, P will halt
 on input P ”

“No, P will not halt
 on input P ”

Outline of Turing's Argument

 If Halt-predictor says “Yes”, then P never halts

“Yes, P will halt
 on input P ”

Halt-predictor
 TM

P

Go into an
INFINITE LOOP

P

Paradox TM

P

This contradicts what Halt-predictor just said!

Outline of Turing's Argument

 If Halt-predictor says “Yes”, then P never halts

“Yes, P will halt
 on input P ”

Halt-predictor
 TM

P

Go into an
INFINITE LOOP

P

Paradox TM

P

This contradicts what Halt-predictor just said!

Outline of Turing's Argument

Halt-predictor
 TM

P

HALT

P

Paradox TM

P

 If Halt-predictor says “No”, then P halts

This contradicts what Halt-predictor just said!

“No, P will not halt
 on input P ”

Outline of Turing's Argument

Halt-predictor
 TM

P

HALT

P

Paradox TM

P

 If Halt-predictor says “No”, then P halts

This contradicts what Halt-predictor just said!

“No, P will not halt
 on input P ”

Outline of Turing's Argument

 Either way, we get a logical contradiction!

“Yes, P will halt
 on input P ”

“No, P will not halt
 on input P ”

Halt-predictor
 TM

P

Go into an
INFINITE LOOP HALT

P

Paradox TM

P

Outline of Turing's Argument

 Either way, we get a logical contradiction!

“Yes, P will halt
 on input P ”

“No, P will not halt
 on input P ”

Halt-predictor
 TM

P

Go into an
INFINITE LOOP HALT

P

Paradox TM

P

Outline of Turing's Argument

“Yes, P will halt
 on input P ”

“No, P will not halt
 on input P ”

Halt-predictor
 TM

P

Go into an
INFINITE LOOP HALT

P

Paradox TM

P

 The only possible conclusion:

 The Halt-predictor TM cannot exist

Outline of Turing's Argument

“Yes, P will halt
 on input P ”

“No, P will not halt
 on input P ”

Halt-predictor
 TM

P

Go into an
INFINITE LOOP HALT

P

Paradox TM

P

 The only possible conclusion:

 The Halt-predictor TM cannot exist

Undecidable Problems

● The Halting Problem was the first undecidable problem
to be discovered

● … but certainly not the last

● The class of undecidable problems is infinitely large

● The study of undecidable problems constitutes an
extremely rich area of theoretical computer science

Undecidable Problems

● The Halting Problem was the first undecidable problem
to be discovered

● … but certainly not the last

● The class of undecidable problems is infinitely large

● The study of undecidable problems constitutes an
extremely rich area of theoretical computer science

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

