

Recommended Reading for This Week

Chapter 22: Neural Networks and Learning (pp. 383 - 413)

Recommended Reading for This Week

Chapter 22: Neural Networks and Learning (pp. 383 - 413)

Artificial Neurons: Binary Version

. . .

-1.27
0.13

2.51
0.09

Weighted connections:

Input units:

Output unit:

1 01 1

1

Input Pattern

threshold = 0.5

0

1

0.50 1

1  2.51 + 1  0.13 + 0  -1.27 + . . . + 1  0.09 = 2.73

2.73 > 0.5

Artificial Neurons: Binary Version

. . .

-1.27
0.13

2.51
0.09

Weighted connections:

Input units:

Output unit:

1 01 1

1

Input Pattern

threshold = 0.5

0

1

0.50 1

1  2.51 + 1  0.13 + 0  -1.27 + . . . + 1  0.09 = 2.73

2.73 > 0.5

Bias vs. Threshold

. . .

-1.27
0.13

2.51
0.09

1 01 1

1

Input Pattern

threshold = 0

0

1

0-1 1

1  2.51 + 1  0.13 + 0  -1.27 + . . . + 1  0.09 – 0.5 = 2.23

2.23 > 0

bias: –0.5

Weighted connections:

Input units:

Output unit:

1

Bias vs. Threshold

. . .

-1.27
0.13

2.51
0.09

1 01 1

1

Input Pattern

threshold = 0

0

1

0-1 1

1  2.51 + 1  0.13 + 0  -1.27 + . . . + 1  0.09 – 0.5 = 2.23

2.23 > 0

bias: –0.5

Weighted connections:

Input units:

Output unit:

1

Input Patterns

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 . . .

 16  16 “retina”

256 binary values

0 1

Input Patterns

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 . . .

 16  16 “retina”

256 binary values

0 1

Input Patterns

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 . . .

First row

 16  16 “retina”

256 binary values

Input Patterns

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 . . .

First row

 16  16 “retina”

256 binary values

Input Patterns

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 . . .

First row Second row etc.

 16  16 “retina”

256 binary values

Input Patterns

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 . . .

First row Second row etc.

 16  16 “retina”

256 binary values

The Logical Function AND

+1+1

-1.5
0 0  0

0 1  0

1 0  0

1 1  1
0 0

-1.5

0 × 1 + 0 × 1 – 1.5 = –1.5 < 0

The Logical Function AND

+1+1

-1.5
0 0  0

0 1  0

1 0  0

1 1  1
0 0

-1.5

0 × 1 + 0 × 1 – 1.5 = –1.5 < 0

The Logical Function AND

+1+1

-1.5
0 0  0

0 1  0

1 0  0

1 1  1
0 0

0 × 1 + 0 × 1 – 1.5 = –1.5 < 0

0

The Logical Function AND

+1+1

-1.5
0 0  0

0 1  0

1 0  0

1 1  1
0 0

0 × 1 + 0 × 1 – 1.5 = –1.5 < 0

0

The Logical Function AND

+1+1

-1.5
0 0  0

0 1  0

1 0  0

1 1  1
0 1

0 × 1 + 1 × 1 – 1.5 = –0.5 < 0

-0.5

The Logical Function AND

+1+1

-1.5
0 0  0

0 1  0

1 0  0

1 1  1
0 1

0 × 1 + 1 × 1 – 1.5 = –0.5 < 0

-0.5

The Logical Function AND

+1+1

-1.5
0 0  0

0 1  0

1 0  0

1 1  1
0 1

0 × 1 + 1 × 1 – 1.5 = –0.5 < 0

0

The Logical Function AND

+1+1

-1.5
0 0  0

0 1  0

1 0  0

1 1  1
0 1

0 × 1 + 1 × 1 – 1.5 = –0.5 < 0

0

The Logical Function AND

+1+1

-1.5
0 0  0

0 1  0

1 0  0

1 1  1
1 0

1 × 1 + 0 × 1 – 1.5 = –0.5 < 0

-0.5

The Logical Function AND

+1+1

-1.5
0 0  0

0 1  0

1 0  0

1 1  1
1 0

1 × 1 + 0 × 1 – 1.5 = –0.5 < 0

-0.5

The Logical Function AND

+1+1

-1.5
0 0  0

0 1  0

1 0  0

1 1  1
1 0

1 × 1 + 0 × 1 – 1.5 = –0.5 < 0

0

The Logical Function AND

+1+1

-1.5
0 0  0

0 1  0

1 0  0

1 1  1
1 0

1 × 1 + 0 × 1 – 1.5 = –0.5 < 0

0

The Logical Function AND

+1+1

-1.5
0 0  0

0 1  0

1 0  0

1 1  1
1 1

1 × 1 + 1 × 1 – 1.5 = +0.5 > 0

+0.5

The Logical Function AND

+1+1

-1.5
0 0  0

0 1  0

1 0  0

1 1  1
1 1

1 × 1 + 1 × 1 – 1.5 = +0.5 > 0

+0.5

The Logical Function AND

+1+1

-1.5
0 0  0

0 1  0

1 0  0

1 1  1
1 1

1 × 1 + 1 × 1 – 1.5 = +0.5 > 0

1

The Logical Function AND

+1+1

-1.5
0 0  0

0 1  0

1 0  0

1 1  1
1 1

1 × 1 + 1 × 1 – 1.5 = +0.5 > 0

1

011

● Binary threshold neurons
● Studied by Frank Rosenblatt of Cornell in early 1960's
● Perceptron training procedure

1. present an input pattern

Perceptrons

target = 1

bias

011

● Binary threshold neurons
● Studied by Frank Rosenblatt of Cornell in early 1960's
● Perceptron training procedure

1. present an input pattern

Perceptrons

target = 1

bias

● Binary threshold neurons
● Studied by Frank Rosenblatt of Cornell in early 1960's
● Perceptron training procedure

1. present an input pattern
2. compute output value

 output = Θ(sum of inputs  weights + bias)

Perceptrons

011

0

target = 1

“threshold” function:

if sum  0: output = 1
if sum < 0: output = 0

bias

● Binary threshold neurons
● Studied by Frank Rosenblatt of Cornell in early 1960's
● Perceptron training procedure

1. present an input pattern
2. compute output value

 output = Θ(sum of inputs  weights + bias)

Perceptrons

011

0

target = 1

“threshold” function:

if sum  0: output = 1
if sum < 0: output = 0

bias

0

● Binary threshold neurons
● Studied by Frank Rosenblatt of Cornell in early 1960's
● Perceptron training procedure

1. present an input pattern
2. compute output value

 output = Θ(sum of inputs  weights + bias)

3. compare output to target value
 error = target – output

Perceptrons

011

target = 1
error = 1 – 0 = 1

bias

0

● Binary threshold neurons
● Studied by Frank Rosenblatt of Cornell in early 1960's
● Perceptron training procedure

1. present an input pattern
2. compute output value

 output = Θ(sum of inputs  weights + bias)

3. compare output to target value
 error = target – output

Perceptrons

011

target = 1
error = 1 – 0 = 1

bias

0

● Binary threshold neurons
● Studied by Frank Rosenblatt of Cornell in early 1960's
● Perceptron training procedure

1. present an input pattern
2. compute output value

 output = Θ(sum of inputs  weights + bias)

3. compare output to target value
 error = target – output

4. if incorrect, adjust weights and bias
weight_adjustment = ε  input  error
bias_adjustment = ε  error

Perceptrons

011

target = 1
error = 1 – 0 = 1

“learning rate” (0 < ε < 1)

bias

0

● Binary threshold neurons
● Studied by Frank Rosenblatt of Cornell in early 1960's
● Perceptron training procedure

1. present an input pattern
2. compute output value

 output = Θ(sum of inputs  weights + bias)

3. compare output to target value
 error = target – output

4. if incorrect, adjust weights and bias
weight_adjustment = ε  input  error
bias_adjustment = ε  error

Perceptrons

011

target = 1
error = 1 – 0 = 1

“learning rate” (0 < ε < 1)

bias

● Binary threshold neurons
● Studied by Frank Rosenblatt of Cornell in early 1960's
● Perceptron training procedure

1. present an input pattern
2. compute output value

 output = Θ(sum of inputs  weights + bias)

3. compare output to target value
 error = target – output

4. if incorrect, adjust weights and bias
weight_adjustment = ε  input  error

5. repeat until all input patterns give
 the correct output value

Perceptrons

011

1

target = 1
error = 0

bias

● Binary threshold neurons
● Studied by Frank Rosenblatt of Cornell in early 1960's
● Perceptron training procedure

1. present an input pattern
2. compute output value

 output = Θ(sum of inputs  weights + bias)

3. compare output to target value
 error = target – output

4. if incorrect, adjust weights and bias
weight_adjustment = ε  input  error

5. repeat until all input patterns give
 the correct output value

Perceptrons

011

1

target = 1
error = 0

bias

● Perceptron learning theorem

The perceptron training procedure is guaranteed to find
weight values that correctly solve the problem, within a
finite number of steps, provided such weight values exist.

● Not all problems can be solved by single-layer perceptrons
● Classic example: XOR

● Perceptrons with multiple layers of weights can solve XOR
● But no training procedure or learning theorem for

multi-layer networks was known in the 1960s

Perceptrons

0 0  0 0 1  1
1 1  0 1 0  1

● Perceptron learning theorem

The perceptron training procedure is guaranteed to find
weight values that correctly solve the problem, within a
finite number of steps, provided such weight values exist.

● Not all problems can be solved by single-layer perceptrons
● Classic example: XOR

● Perceptrons with multiple layers of weights can solve XOR
● But no training procedure or learning theorem for

multi-layer networks was known in the 1960s

Perceptrons

0 0  0 0 1  1
1 1  0 1 0  1

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 0

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 0

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 0

-0.5

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 0

-0.5

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 0

0

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 0

0

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 0

0 -0.5

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 0

0 -0.5

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 0

0 0

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 0

0 0

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 0

0 0

-0.5

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 0

0 0

-0.5

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 0

0 0

0

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 0

0 0

0

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 1

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 1

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 1

-1.5

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 1

-1.5

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 1

0

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 1

0

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 1

+0.50

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 1

+0.50

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 1

0 1

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 1

0 1

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 1

0 1

+0.5

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 1

0 1

+0.5

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 1

0 1

1

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

0 1

0 1

1

A Neural Network for XOR

0 0  0

0 1  1

1 0  1

1 1  0 +1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

1 0

A Neural Network for XOR

0 0  0

0 1  1

1 0  1

1 1  0 +1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

1 0

A Neural Network for XOR

0 0  0

0 1  1

1 0  1

1 1  0 +1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

1 0

+0.5

A Neural Network for XOR

0 0  0

0 1  1

1 0  1

1 1  0 +1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

1 0

+0.5

A Neural Network for XOR

0 0  0

0 1  1

1 0  1

1 1  0 +1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

1 0

1

A Neural Network for XOR

0 0  0

0 1  1

1 0  1

1 1  0 +1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

1 0

1

A Neural Network for XOR

0 0  0

0 1  1

1 0  1

1 1  0 +1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

1 0

1 -1.5

A Neural Network for XOR

0 0  0

0 1  1

1 0  1

1 1  0 +1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

1 0

1 -1.5

A Neural Network for XOR

0 0  0

0 1  1

1 0  1

1 1  0 +1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

1 0

1 0

A Neural Network for XOR

0 0  0

0 1  1

1 0  1

1 1  0 +1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

1 0

1 0

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

1 0

1 0

+0.5

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

1 0

1 0

+0.5

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

1 0

1 0

1

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

1 0

1 0

1

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

1 1

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

1 1

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

1 1

-0.5

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

1 1

-0.5

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

1 1

0

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

1 1

0

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

1 1

-0.50

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

1 1

-0.50

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

1 1

0 0

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

1 1

0 0

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

1 1

0 0

-0.5

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

1 1

0 0

-0.5

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

1 1

0 0

0

A Neural Network for XOR

+1 -1 -1 +1

+1+1

-0.5

-0.5-0.5

0 0  0

0 1  1

1 0  1

1 1  0

1 1

0 0

0

● Marvin Minsky and Seymour Papert of MIT published
Perceptrons in 1969

● They rigorously analyzed the limitations
of perceptrons, and doubted that a
training procedure existed for networks
with multiple layers of weights

● This caused many people to seriously
question the potential of neural networks

● As a result, interest in neural network
research (and funding) largely dried up
for more than a decade

Perceptrons

● Marvin Minsky and Seymour Papert of MIT published
Perceptrons in 1969

● They rigorously analyzed the limitations
of perceptrons, and doubted that a
training procedure existed for networks
with multiple layers of weights

● This caused many people to seriously
question the potential of neural networks

● As a result, interest in neural network
research (and funding) largely dried up
for more than a decade

Perceptrons

W2W1

bias

x y

W1 x + W2 y + bias = sum

● When sum > 0, the input x, y is classified one way (1)

● When sum < 0, the input x, y is classified the other way (0)

● When sum = 0, the input x, y is right on the “border”

A perceptron is an “adjustable line”

W2W1

bias

x y

W1 x + W2 y + bias = sum

● When sum > 0, the input x, y is classified one way (1)

● When sum < 0, the input x, y is classified the other way (0)

● When sum = 0, the input x, y is right on the “border”

A perceptron is an “adjustable line”

W2W1

bias

x y

 W1 x + W2 y + bias = 0

This is the equation of a line, which we can rewrite
in standard slope-intercept form as y = mx + b:

 y = -W1/W2 x + -bias/W2

Slope of line Intercept of line with y-axis

A perceptron is an “adjustable line”

W2W1

bias

x y

 W1 x + W2 y + bias = 0

This is the equation of a line, which we can rewrite
in standard slope-intercept form as y = mx + b:

 y = -W1/W2 x + -bias/W2

Slope of line Intercept of line with y-axis

A perceptron is an “adjustable line”

slope = -W1/W2

-bias/W2

By adjusting the values of W1, W2, and bias, we can
change the orientation of the line in any way we like

x

y

A perceptron is an “adjustable line”

slope = -W1/W2

-bias/W2

By adjusting the values of W1, W2, and bias, we can
change the orientation of the line in any way we like

x

y

A perceptron is an “adjustable line”

Linear Separability

x

y

x y x AND y

0 0 0
0 1 0
1 0 0
1 1 1 0 0

0 1 1 1

1 0

● Input patterns correspond to points in the input space

input
patterns

Linear Separability

x

y

x y x AND y

0 0 0
0 1 0
1 0 0
1 1 1 0 0

0 1 1 1

1 0

● Input patterns correspond to points in the input space

input
patterns

Linear Separability

x

y

x y x AND y

0 0 0
0 1 0
1 0 0
1 1 1 0 0

0 1 1 1

1 0

● Input patterns correspond to points in the input space
● A perceptron that correctly classifies input patterns as

belonging to category A or category B corresponds to a
straight line dividing the input space into two halves

● The two categories of input patterns are linearly separable

A

B

Linear Separability

x

y

x y x AND y

0 0 0
0 1 0
1 0 0
1 1 1 0 0

0 1 1 1

1 0

● Input patterns correspond to points in the input space
● A perceptron that correctly classifies input patterns as

belonging to category A or category B corresponds to a
straight line dividing the input space into two halves

● The two categories of input patterns are linearly separable

A

B

Linear Separability

x

y

x y x OR y

0 0 0
0 1 1
1 0 1
1 1 1 0 0

0 1 1 1

1 0

● Input patterns correspond to points in the input space
● A perceptron that correctly classifies input patterns as

belonging to category A or category B corresponds to a
straight line dividing the input space into two halves

● The two categories of input patterns are linearly separable

A

B

Linear Separability

x

y

x y x OR y

0 0 0
0 1 1
1 0 1
1 1 1 0 0

0 1 1 1

1 0

● Input patterns correspond to points in the input space
● A perceptron that correctly classifies input patterns as

belonging to category A or category B corresponds to a
straight line dividing the input space into two halves

● The two categories of input patterns are linearly separable

A

B

Linear Separability

x

y

x y x XOR y

0 0 0
0 1 1
1 0 1
1 1 0 0 0

0 1 1 1

1 0

● Input patterns correspond to points in the input space
● A perceptron that correctly classifies input patterns as

belonging to category A or category B corresponds to a
straight line dividing the input space into two halves

● The two categories of input patterns are linearly separable

B
A

A ?

Linear Separability

x

y

x y x XOR y

0 0 0
0 1 1
1 0 1
1 1 0 0 0

0 1 1 1

1 0

● Input patterns correspond to points in the input space
● A perceptron that correctly classifies input patterns as

belonging to category A or category B corresponds to a
straight line dividing the input space into two halves

● The two categories of input patterns are linearly separable

B
A

A ?

● Minsky and Papert proved that many interesting problems are
not linearly separable, and thus no perceptron can learn them

Linear Separability

● Minsky and Papert proved that many interesting problems are
not linearly separable, and thus no perceptron can learn them

Linear Separability

● This idea applies to input spaces of any dimensionality
● Example: 3-dimensional input patterns

Linear Separability

linearly separable

[0.3 0.4 0.6]

red / blue

● This idea applies to input spaces of any dimensionality
● Example: 3-dimensional input patterns

Linear Separability

linearly separable

[0.3 0.4 0.6]

red / blue

● This idea applies to input spaces of any dimensionality
● Example: 3-dimensional input patterns

Linear Separability

partially linearly separable

[0.3 0.4 0.6]

red / blue

● This idea applies to input spaces of any dimensionality
● Example: 3-dimensional input patterns

Linear Separability

partially linearly separable

[0.3 0.4 0.6]

red / blue

● This idea applies to input spaces of any dimensionality
● Example: 3-dimensional input patterns

Linear Separability

not linearly separable

[0.3 0.4 0.6]

red / blue

● This idea applies to input spaces of any dimensionality
● Example: 3-dimensional input patterns

Linear Separability

not linearly separable

[0.3 0.4 0.6]

red / blue

● Multi-layer networks can learn to classify input patterns that
are not linearly separable

● Example: recognizing vowels

Linear Separability

● Multi-layer networks can learn to classify input patterns that
are not linearly separable

● Example: recognizing vowels

Linear Separability

● In the 1980s, a way to train multi-layer networks was
discovered, called the backpropagation learning algorithm

● David Rumelhart, Geoffrey Hinton, James McClelland, and
others revived interest in neural networks with the publication
of the “PDP books”

● Showed that Minsky and
Papert’s analysis was too
pessimistic

● Backpropagation is one
of the key components
of modern-day research
in deep learning

Parallel Distributed Processing (PDP)

● In the 1980s, a way to train multi-layer networks was
discovered, called the backpropagation learning algorithm

● David Rumelhart, Geoffrey Hinton, James McClelland, and
others revived interest in neural networks with the publication
of the “PDP books”

● Showed that Minsky and
Papert’s analysis was too
pessimistic

● Backpropagation is one
of the key components
of modern-day research
in deep learning

Parallel Distributed Processing (PDP)

bias: -0.5

1  2.51 + 1  0.13 + 0  -1.27 + . . . + 1  0.09 + -0.5 = 2.23

. . .

-1.27
0.13

2.51
0.09

1 01 1

1

Input Pattern

threshold = 0

0

1

0-5 +5

2.23 > 0

Weighted connections:

Input units:

Output unit:

1

Artificial Neurons: Binary Version

bias: -0.5

1  2.51 + 1  0.13 + 0  -1.27 + . . . + 1  0.09 + -0.5 = 2.23

. . .

-1.27
0.13

2.51
0.09

1 01 1

1

Input Pattern

threshold = 0

0

1

0-5 +5

2.23 > 0

Weighted connections:

Input units:

Output unit:

1

Artificial Neurons: Binary Version

Artificial Neurons: Continuous Version

. . .

-1.27
0.13

2.51
0.09

Weighted connections:

Input units:

Output unit:

1.0 0.0 0.2 0.7

0.86

Input Pattern

0-5 +5

s(x) =
1 + e-x

1

0.0

1.0s(1.82) = 0.86

bias: -0.5

1.0  2.51 + 0.0  0.13 + 0.2  -1.27 + . . . + 0.7  0.09 + -0.5 = 1.82

Artificial Neurons: Continuous Version

. . .

-1.27
0.13

2.51
0.09

Weighted connections:

Input units:

Output unit:

1.0 0.0 0.2 0.7

0.86

Input Pattern

0-5 +5

s(x) =
1 + e-x

1

0.0

1.0s(1.82) = 0.86

bias: -0.5

1.0  2.51 + 0.0  0.13 + 0.2  -1.27 + . . . + 0.7  0.09 + -0.5 = 1.82

● Units are arranged into successive layers
● Feed-forward connections only
● Layer activations represent stimulus/response associations

Pattern Associator Networks

Activation Flow

● Units are arranged into successive layers
● Feed-forward connections only
● Layer activations represent stimulus/response associations

Pattern Associator Networks

Activation Flow

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

