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● Marvin Minsky and Seymour Papert of MIT published
Perceptrons in 1969

● They rigorously analyzed the limitations
of perceptrons, and doubted that a
training procedure existed for networks
with multiple layers of weights

● This caused many people to seriously
question the potential of neural networks

● As a result, interest in neural network
research (and funding) largely dried up
for more than a decade
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● Minsky and Papert proved that many interesting problems are 
not linearly separable, and thus no perceptron can learn them
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● Multi-layer networks can learn to classify input patterns that 
are not linearly separable

● Example: recognizing vowels
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● In the 1980s, a way to train multi-layer networks was 
discovered, called the backpropagation learning algorithm

● David Rumelhart, Geoffrey Hinton, James McClelland, and 
others revived interest in neural networks with the publication 
of the “PDP books”

● Showed that Minsky and
Papert’s analysis was too
pessimistic

● Backpropagation is one
of the key components
of modern-day research
in deep learning 

Parallel Distributed Processing (PDP)
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● Feed-forward connections only
● Layer activations represent stimulus/response associations
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