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Rule:  
 

Elementary cellular automata 
 

One-dimensional, two states (black and white) 





Stephen Wolfram 



To define an ECA, fill in right side of arrows with black 
and white boxes: 

2 possibilities 

2 possibilities 

2 possibilities 

2 possibilities 

2 possibilities 

2 possibilities 

2 possibilities 

2 possibilities 

Total:  2 ! 2 ! 2 ! 2 ! 2 ! 
2 ! 2 ! 2  = 28  
= 256 possible ECAs 
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  Interpret this as an integer in base 2: 

 
 
 
 
 
“Rule 110”   
 
 
 
 
 
 
 
 

(0!27)+ (1!26 )+ (1!25)+ (0!24 )
+ (1!23)+ (1!22 )+ (1!21)+ (0!20 )
=110
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(1!27)+ (1!26 )+ (0!25)+ (0!24 )
+ (0!23)+ (0!22 )+ (0!21)+ (1!20 )
=128+ 64+1=193
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“The Rule 30 automaton is the most surprising thing I’ve ever seen in 

science....It took me several years to absorb how important this was.  

But in the end, I realized that this one picture contains the clue to what’s 

perhaps the most long-standing mystery in all of science: where, in the 

end, the complexity of the natural world comes from.” 

!!Stephen Wolfram (Quoted in Forbes)  
 
Wolfram patented Rule 30’s use as a pseudo-random number generator! 
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Wolfram’s Four Classes of CA Behavior 

Class 1: Almost all initial configurations relax 
after a transient period to the same fixed 
configuration. 

Class 2: Almost all initial configurations relax 
after a transient period to some fixed point or 
some periodic cycle of configurations, but 
which one depends on the initial configuration 
 

Class 3: Almost all initial configurations 
relax after a transient period to chaotic 
behavior. (The term ``chaotic'‘ here refers 
to apparently unpredictable space-time 
behavior.) 

Class 4: Some initial configurations result 
in complex localized structures, sometimes 
long-lived. 



Examples of complex, 
long-lived localized 
structures 

Rule 110 



CAs as dynamical systems 
 

(Analogy with logistic map) 



Logistic Map 
 
 
 
Deterministic 
 
Discrete time steps 
 
Continuous “state” (value of x is a 
real number) 
 
Dynamics: 
Fixed point --- periodic ---- chaos 
 
Control parameter: R  

Elementary Cellular Automata 
 
latticet+1 = f (latticet)  [f = ECA rule) 
 
Deterministic  
 
Discrete time steps 
 
Discrete state (value of lattice is 
sequence of “black” and “white”) 
 
Dynamics: 
Fixed point – periodic – chaos 
 
Control parameter: ? 

xt+1 = f (xt ) = R xt 1! xt( )



fixed point          periodic         chaotic    

0        R          4      



Langton’s Lambda parameter as a proposed 
control parameter for CAs 

Chris Langton 

For two-state (black and white) CAs:  
 
Lambda = fraction of black output states in  
CA rule table 
 
For example: 
 
 
 
 
 
 
 
 

   Lambda = 5/8   



Langton’s hypothesis: 

Lambda 
 

(for two-state CAs) 
 

Lambda is a better predictor of behavior for neighborhood size > 3 cells  

“Typical” CA behavior (after transients):  

fixed point     periodic   chaotic       periodic          fixed-point                

0                 1      



Summary 

•  CAs can be viewed as dynamical systems, with different attractors 
(fixed-point, periodic, chaotic, “edge of chaos”) 

•  These correspond to Wolfram’s four classes 
 
•  Langton’s Lambda parameter is one “control parameter” that 

(roughly) indicates what type of attractor to expect  

•  The Game of Life is a Class 4 CA! 

•  Wolfram hypothesized that Class 4 CAs are capable of “universal 
computation” 


