
Lab 1 – Introduction to Scheme

Some of the following exercises are taken from Chapter 1 of the book Concrete Abstractions.  You may wish to refer to 
the chapter if needed while working through the exercises.

1. Define a procedure called cube that takes a number as input and computes its cube.

2. Define a procedure called sphere-volume that takes the radius of a sphere as input and computes its 
volume using the formula Volume = (4/3) π r3 where π is the value 3.14159.  Some examples are shown 
below:

   (sphere-volume 1)   =>  4.188786666666666
   (sphere-volume 3)   =>  113.09723999999999
   (sphere-volume 0)   =>  0

3. Write a procedure (distance x1 y1 x2 y2) that takes the coordinate values of two points (x1, y1) 
and (x2, y2) as input, in that order, and computes the distance between the points using the formula below:  

Remember that Scheme has a built-in procedure for computing square roots called sqrt.  Test your 
procedure on the following input values: 

   (distance 1 2 4 6)    =>  5
   (distance 1 1 2 2)    =>  1.4142135623730951
   (distance 4 0 -6 3)   =>  10.44030650891055

4. Write a procedure called average that takes three numbers and returns their average.

5. Write a procedure called middle3-average that takes five numbers and returns the average of the 
middle three (dropping the highest and lowest values).  Hint: use min and max. 

6. Remember the good old quadratic formula from high school math, which can be used to figure out the value 
of x in the equation ax2 + bx + c = 0?  Here it is:

Actually, there are always two values of x (called “roots”) that will satisfy the above equation.  The symbol  +
in the formula means that you can calculate the first root by using addition (+) in the formula and the second 
root by using subtraction (-).  Write a procedure called quadratic+ that takes the values a, b, and c as 
input and calculates the first root of the equation (the one using addition).  Here are some examples:

   (quadratic+ 2 3 1)   => -1/2
   (quadratic+ 3 6 3)   => -1
   (quadratic+ 5 6 2)   => -3/5+1/5i

7. Assume that you know how much money you typically spend daily (on food and other daily needs), weekly 
(on transportation costs, entertainment, etc.), and monthly (rent, loans, credit cards, etc.).  Write a procedure 
called annual-spending to compute your typical annual spending.  Your procedure should have three 
input parameters corresponding to the daily, weekly, and monthly spending amounts.  There are 52 weeks in 
a year, and a total of 365 days (ignoring leap years).

8. Consider the “mystery” procedure below.  Can you figure out what it does?  Make some predictions about 
how it will behave on various input values, and then carefully type it in and try it out to verify your answers.

(define mystery
  (lambda (a b)
    ((if (> b 0) + -) a b)))
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9. According to the Joy of Cooking, candy syrups should be cooked 1 degree cooler than listed in the recipe for 
each 500 feet of elevation above sea level.  Define a procedure called candy-temp that takes two values as
input: the recipe's temperature in degrees and the elevation in feet.  It should calculate the temperature to use
at that elevation.  The recipe for Chocolate Caramels calls for a temperature of 244 degrees; suppose you 
wanted to make them in Denver, the “mile high city”.  (One mile equals 5280 feet.)  Use your procedure to 
find the temperature for making the syrup.

10.  Candy thermometers are usually calibrated only in integer degrees, so it would be handy if your candy-
temp procedure would give an answer rounded to the nearest degree. Rounding can be done using the 
predefined procedure called round. For example, (round 7/3) and (round 5/3) both evaluate to 2. 
Insert an application of round at the appropriate place in your procedure definition and test it again.

11. The U.S. tax code uses what is called a marginal tax rate.  This policy means roughly that the tax rate used 
depends on the level of income.  For example, suppose that the first $10,000 of a person's income is not 
taxed at all, but the amount above $10,000 is taxed at 20 percent.  If you earned $12,500, the first $10,000 
would be untaxed, but the amount over $10,000, namely $2,500, would be taxed at 20 percent, yielding a  tax
bill of 20/100 × $2,500 = $500.  Write a procedure called tax that takes a person's income and calculates 
the tax using these assumptions.  Hint: use an if expression.

12. The next few exercises use the predefined graphics images shown below:

IMPORTANT: to use these images, you need to have installed the “concabs” library by following the 
instructions on our class web page.  You must also include the following line at the top of your code:

(require (lib ”fungraph.ss” ”concabs”))

Try evaluating the following expressions, which use the operations stack and quarter-turn-right 
to combine images into more complex images in various ways:

(stack rcross-bb corner-bb)

(quarter-turn-right test-bb)

(stack (stack rcross-bb corner-bb) test-bb)

(stack (stack rcross-bb corner-bb)
       (stack (quarter-turn-right test-bb) test-bb))

13. Define procedures half-turn and quarter-turn-left that do as their names suggest. Both 
procedures take a single argument, namely, the image to turn. You  will naturally need to use the built-in 
procedure quarter-turn-right.

14. Define a procedure side-by-side that takes two images as arguments and creates  a composite image 
having the first image on the left and the second image on  the right.  Hint: use the quarter-turn-left 
procedure you defined above to help you out.
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15. Each dark cross in the repeating crosses pattern is formed by joining together four  copies of the basic block, 
each facing a different way. We can call this operation  pinwheeling the basic block; here is an example of the
same operation performed on the image test-bb:

Define the pinwheel procedure and use it to make a cross as shown below:

16. Now try pinwheeling the cross—you should get a sample of the quilt, with four  dark crosses, as shown
on page 15 of Concrete Abstractions. If you pinwheel that, how big is the quilt you get? Try making other 
pinwheeled quilts in the same way, but using the other basic  blocks. What do the designs look like?

17. All four of the basic blocks can be produced using two primitive graphics  procedures.  The first of these, 
filled-triangle, takes six arguments, which are the x and y coordinates of the corners of the triangle 
that is to be filled in. The coordinate system runs from -1 to 1 in both dimensions. For example, here is the 
definition of test-bb:

(define test-bb (filled-triangle 0 1 0 -1 1 -1))

The second of these procedures, overlay, combines images. To understand how it works, imagine having 
two images on sheets of transparent plastic laid one on top of  the other so that you see the two images 
together. For example, here is the definition  of nova-bb, which is made out of two triangles:

(define nova-bb 
        (overlay (filled-triangle 0 1 0 0 -1/2 0) 
                 (filled-triangle 0 0 0 1/2 1 0)))

Use these primitive graphics procedures to define the other two basic blocks, rcross-bb and 
corner-bb.

18. Now that you know how it is done, be inventive. Come up with some basic blocks of your own and 
make pinwheeled quilts out of them. You might find it interesting to try experiments such as 
overlaying rotated versions of an image on one another.
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