
Lab 2 – Conditional and Logical Expressions

1. In class this week, we wrote the function (divides? smaller larger), which determines if the smaller
number divides exactly into the larger number, with a remainder of zero. Rewrite this definition using a
cond expression instead of an if expression. Make sure to test your new version on several input values.

(define divides?
 (lambda (smaller larger)
 (if (= (remainder larger smaller) 0)
 #t
 #f)))

2. We also wrote the function (classify n), which returns the symbol negative, positive, or zero
depending on the input value n. Rewrite this function using a cond expression instead of nested if
expressions. Make sure to test your new version on several input values.

(define classify
 (lambda (n)
 (if (< n 0)
 'negative
 (if (> n 0)
 'positive
 'zero))))

3. Rewrite the function both-zero? using a single cond expression instead of nested if expressions. For this
exercise, it may help to modify one or both of the if-conditions using the not function.

(define both-zero?
 (lambda (a b)
 (if (= a 0)
 (if (= b 0)
 #t
 #f)
 #f)))

4. Write the function (teen? age) that takes an age in years as input and returns #t if the age is between 13
and 19, inclusive. Hint: use an and expression in your definition. For example:

(teen? 13) → #t
(teen? 14) → #t
(teen? 21) → #f

5. Write the function (exactly-one-zero? a b), which takes two numbers as input and returns #t if
exactly one of the numbers is zero, or #f otherwise. For this problem, you are not allowed to use
multiplication or addition in your solution. For example:

(exactly-one-zero? 0 0) → #f
(exactly-one-zero? 0 3) → #t
(exactly-one-zero? 2 0) → #t
(exactly-one-zero? 1 2) → #f

6. Write the function (equal-dates? month1 day1 year1 month2 day2 year2), which takes two
dates as input, each in the form of three numbers representing the month, day, and year, and returns #t if the
dates are the same. Hint: use an and expression in your definition. Test your function on the following
inputs, and make up a few other tests of your own:

(equal-dates? 2 12 2021 2 12 2021) → #t
(equal-dates? 7 4 1776 7 4 1889) → #f
(equal-dates? 10 31 1999 12 31 1999) → #f

Lab 2 – Conditional and Logical Expressions

1. In class this week, we wrote the function (divides? smaller larger), which determines if the smaller
number divides exactly into the larger number, with a remainder of zero. Rewrite this definition using a
cond expression instead of an if expression. Make sure to test your new version on several input values.

(define divides?
 (lambda (smaller larger)
 (if (= (remainder larger smaller) 0)
 #t
 #f)))

2. We also wrote the function (classify n), which returns the symbol negative, positive, or zero
depending on the input value n. Rewrite this function using a cond expression instead of nested if
expressions. Make sure to test your new version on several input values.

(define classify
 (lambda (n)
 (if (< n 0)
 'negative
 (if (> n 0)
 'positive
 'zero))))

3. Rewrite the function both-zero? using a single cond expression instead of nested if expressions. For this
exercise, it may help to modify one or both of the if-conditions using the not function.

(define both-zero?
 (lambda (a b)
 (if (= a 0)
 (if (= b 0)
 #t
 #f)
 #f)))

4. Write the function (teen? age) that takes an age in years as input and returns #t if the age is between 13
and 19, inclusive. Hint: use an and expression in your definition. For example:

(teen? 13) → #t
(teen? 14) → #t
(teen? 21) → #f

5. Write the function (exactly-one-zero? a b), which takes two numbers as input and returns #t if
exactly one of the numbers is zero, or #f otherwise. For this problem, you are not allowed to use
multiplication or addition in your solution. For example:

(exactly-one-zero? 0 0) → #f
(exactly-one-zero? 0 3) → #t
(exactly-one-zero? 2 0) → #t
(exactly-one-zero? 1 2) → #f

6. Write the function (equal-dates? month1 day1 year1 month2 day2 year2), which takes two
dates as input, each in the form of three numbers representing the month, day, and year, and returns #t if the
dates are the same. Hint: use an and expression in your definition. Test your function on the following
inputs, and make up a few other tests of your own:

(equal-dates? 2 12 2021 2 12 2021) → #t
(equal-dates? 7 4 1776 7 4 1889) → #f
(equal-dates? 10 31 1999 12 31 1999) → #f

7. Write the function (different-dates? month1 day1 year1 month2 day2 year2), which returns
#t if the dates are different. If you wish, you may use your equal-dates? function as a helper. Examples:

(different-dates? 2 12 2021 2 12 2021) → #f
(different-dates? 7 4 1776 7 4 1889) → #t
(different-dates? 10 31 1999 12 31 1999) → #t

8. Write the function (earlier-date month1 day1 year1 month2 day2 year2), which takes two
dates as input, each in the form of three numbers representing the month, day, and year, and returns one of
three possible symbols: if the first date occurs earlier than the second date, the symbol first is returned; if
the second date occurs earlier than the first, the symbol second is returned. Otherwise both dates are the
same, so the symbol neither is returned. You should use a cond expression in your definition. Test your
function on all of the examples below, and make up a few other tests of your own:

(earlier-date 1 1 1963 1 1 2000) → first
(earlier-date 1 1 1964 12 31 1963) → second
(earlier-date 6 15 1999 10 15 1999) → first
(earlier-date 6 30 1999 6 1 1999) → second
(earlier-date 6 30 1999 6 30 1999) → neither

9. Write the function (has-30-days? month), which takes a month number from 1 to 12 as input, and
returns #t if the month has exactly 30 days, or #f otherwise. The months with 30 days are April, June,
September, and November. Your definition should use an or expression.

(has-30-days? 4) → #t
(has-30-days? 1) → #f

10. Write the function (leap-year? year), which takes a year as input and returns #t or #f, indicating
whether the year is a leap year, according to the rules below. Test your function on all of the examples
shown. Hint: define your function as a cond expression, and use divides? as a helper function.

- If the year is divisible by 400, the year is a leap year. Examples: 1600, 2000
- Otherwise, if the year is divisible by 100, the year is not a leap year. Examples: 1700, 1800, 1900
- Otherwise, if the year is divisible by 4, the year is a leap year. Examples: 2004, 2020
- Otherwise, the year is not a leap year. Examples: 2021, 2022

11. Write the function (days-in-month month year), which takes a month number and year as input and
returns the exact number of days in that month, taking into account leap years. You should use your
functions has-30-days? and leap-year? as helper functions. Test your function on the examples below,
and make up a few more tests of your own:

(days-in-month 10 2021) → 31
(days-in-month 2 2021) → 28
(days-in-month 2 2020) → 29
(days-in-month 11 1950) → 30

12. Write the function (valid-date? month day year), which takes a date represented as three numbers as
input, and returns #t if the date is valid, or #f otherwise. To be considered a valid date, month must be in
the range 1 to 12, year must be greater than 0, and day must be in the range 1 to the number of days in the
month, taking into account leap years. Test your function on all of the dates below, and make up a few more
tests of your own:

Valid dates: 2 29 2016, 2 29 2000, 2 28 1900, 1 30 2016, 10 5 1963, 7 4 1776
Invalid dates: 2 29 2018, 2 29 1900, 2 30 2021, 13 5 1963, 10 32 1963, 11 31 2000, 7 -4 0000

7. Write the function (different-dates? month1 day1 year1 month2 day2 year2), which returns
#t if the dates are different. If you wish, you may use your equal-dates? function as a helper. Examples:

(different-dates? 2 12 2021 2 12 2021) → #f
(different-dates? 7 4 1776 7 4 1889) → #t
(different-dates? 10 31 1999 12 31 1999) → #t

8. Write the function (earlier-date month1 day1 year1 month2 day2 year2), which takes two
dates as input, each in the form of three numbers representing the month, day, and year, and returns one of
three possible symbols: if the first date occurs earlier than the second date, the symbol first is returned; if
the second date occurs earlier than the first, the symbol second is returned. Otherwise both dates are the
same, so the symbol neither is returned. You should use a cond expression in your definition. Test your
function on all of the examples below, and make up a few other tests of your own:

(earlier-date 1 1 1963 1 1 2000) → first
(earlier-date 1 1 1964 12 31 1963) → second
(earlier-date 6 15 1999 10 15 1999) → first
(earlier-date 6 30 1999 6 1 1999) → second
(earlier-date 6 30 1999 6 30 1999) → neither

9. Write the function (has-30-days? month), which takes a month number from 1 to 12 as input, and
returns #t if the month has exactly 30 days, or #f otherwise. The months with 30 days are April, June,
September, and November. Your definition should use an or expression.

(has-30-days? 4) → #t
(has-30-days? 1) → #f

10. Write the function (leap-year? year), which takes a year as input and returns #t or #f, indicating
whether the year is a leap year, according to the rules below. Test your function on all of the examples
shown. Hint: define your function as a cond expression, and use divides? as a helper function.

- If the year is divisible by 400, the year is a leap year. Examples: 1600, 2000
- Otherwise, if the year is divisible by 100, the year is not a leap year. Examples: 1700, 1800, 1900
- Otherwise, if the year is divisible by 4, the year is a leap year. Examples: 2004, 2020
- Otherwise, the year is not a leap year. Examples: 2021, 2022

11. Write the function (days-in-month month year), which takes a month number and year as input and
returns the exact number of days in that month, taking into account leap years. You should use your
functions has-30-days? and leap-year? as helper functions. Test your function on the examples below,
and make up a few more tests of your own:

(days-in-month 10 2021) → 31
(days-in-month 2 2021) → 28
(days-in-month 2 2020) → 29
(days-in-month 11 1950) → 30

12. Write the function (valid-date? month day year), which takes a date represented as three numbers as
input, and returns #t if the date is valid, or #f otherwise. To be considered a valid date, month must be in
the range 1 to 12, year must be greater than 0, and day must be in the range 1 to the number of days in the
month, taking into account leap years. Test your function on all of the dates below, and make up a few more
tests of your own:

Valid dates: 2 29 2016, 2 29 2000, 2 28 1900, 1 30 2016, 10 5 1963, 7 4 1776
Invalid dates: 2 29 2018, 2 29 1900, 2 30 2021, 13 5 1963, 10 32 1963, 11 31 2000, 7 -4 0000

	Lab 2 – Conditional and Logical Expressions

