
Lab 6 – Functional Arguments

1. In class, we wrote two versions of the any function, shown below, which takes a predicate function and an
input list, and returns true if any element in the list satisfies the predicate. The first version uses a cond
expression, while the second version uses logical expressions (and/or/not) instead of a cond.

(define any
 (lambda (predicate? input-list)
 (cond
 [(null? input-list) #f]
 [(predicate? (car input-list)) #t]
 [else (any predicate? (cdr input-list))])))

(define any
 (lambda (predicate? input-list)
 (and (not (null? input-list))
 (or (predicate? (car input-list))
 (any predicate? (cdr input-list))))))

We also wrote the all function, which takes a predicate function and returns true if all elements in the list
satisfy the predicate. Rewrite the definition of all shown below using only logical expressions, without
cond. Hint: this function returns true if either the input list is empty, or if the car element satisfies the
predicate and all other elements in the list do so as well. Use the auto-tester program to test your all
function by typing (test: all) at the Scheme prompt. You should use the auto-tester for the rest of your
lab exercises as well, to verify that your functions are working correctly.

(define all
 (lambda (predicate? input-list)
 (cond
 [(null? input-list) #t]
 [(predicate? (car input-list)) (all predicate? (cdr input-list))]
 [else #f])))

2. In class, we wrote the function keep, which takes a predicate function and an input list, and returns a new
list containing just the elements of the original input list that satisfy the predicate function. The next few
exercises ask you to define new functions using keep as a helper.

Write the function keep-odd, which takes a list of numbers and returns a new list containing just the odd
numbers, by filling in the blank in the template below.

(define keep-odd
 (lambda (input-list)
 (keep _______________ input-list)))

(keep-odd '(2 3 4 5 7)) → (3 5 7)
(keep-odd ' (1 1 2 2 3 3 4 4 5 5)) → (1 1 3 3 5 5)

3. Write the function keep-even, which keeps just the even numbers, by filling in the template below.

(define keep-even
 (lambda (input-list)
 (keep _______________ input-list)))

(keep-even '(2 3 4 5 7)) → (2 4)
(keep-even ' (1 1 2 2 3 3 4 4 5 5)) → (2 2 4 4)

4. Write the function keep-big, which keeps only numbers bigger than 100, by filling in the template below
using a lambda expression of the form (lambda (x) ___________).

(define keep-big
 (lambda (input-list)
 (keep _______________ input-list)))

Lab 6 – Functional Arguments

1. In class, we wrote two versions of the any function, shown below, which takes a predicate function and an
input list, and returns true if any element in the list satisfies the predicate. The first version uses a cond
expression, while the second version uses logical expressions (and/or/not) instead of a cond.

(define any
 (lambda (predicate? input-list)
 (cond
 [(null? input-list) #f]
 [(predicate? (car input-list)) #t]
 [else (any predicate? (cdr input-list))])))

(define any
 (lambda (predicate? input-list)
 (and (not (null? input-list))
 (or (predicate? (car input-list))
 (any predicate? (cdr input-list))))))

We also wrote the all function, which takes a predicate function and returns true if all elements in the list
satisfy the predicate. Rewrite the definition of all shown below using only logical expressions, without
cond. Hint: this function returns true if either the input list is empty, or if the car element satisfies the
predicate and all other elements in the list do so as well. Use the auto-tester program to test your all
function by typing (test: all) at the Scheme prompt. You should use the auto-tester for the rest of your
lab exercises as well, to verify that your functions are working correctly.

(define all
 (lambda (predicate? input-list)
 (cond
 [(null? input-list) #t]
 [(predicate? (car input-list)) (all predicate? (cdr input-list))]
 [else #f])))

2. In class, we wrote the function keep, which takes a predicate function and an input list, and returns a new
list containing just the elements of the original input list that satisfy the predicate function. The next few
exercises ask you to define new functions using keep as a helper.

Write the function keep-odd, which takes a list of numbers and returns a new list containing just the odd
numbers, by filling in the blank in the template below.

(define keep-odd
 (lambda (input-list)
 (keep _______________ input-list)))

(keep-odd '(2 3 4 5 7)) → (3 5 7)
(keep-odd ' (1 1 2 2 3 3 4 4 5 5)) → (1 1 3 3 5 5)

3. Write the function keep-even, which keeps just the even numbers, by filling in the template below.

(define keep-even
 (lambda (input-list)
 (keep _______________ input-list)))

(keep-even '(2 3 4 5 7)) → (2 4)
(keep-even ' (1 1 2 2 3 3 4 4 5 5)) → (2 2 4 4)

4. Write the function keep-big, which keeps only numbers bigger than 100, by filling in the template below
using a lambda expression of the form (lambda (x) ___________).

(define keep-big
 (lambda (input-list)
 (keep _______________ input-list)))

5. Write the function remove-all, which takes a symbol and an input list, and removes all occurrences of the
specified symbol from the list, by filling in the template below with a lambda expression of the form
(lambda (x) ___________).

(define remove-all
 (lambda (symbol input-list)
 (keep _______________ input-list)))

(remove-all 'x '(a b x a b x x b x)) → (a b a b b)
(remove-all 'b '(a b x a b x x b x)) → (a x a x x x)

6. Write the function drop, which takes a predicate function and an input list, and removes all elements from
the list that satisfy the given predicate function, by filling in the template below with a lambda expression of
the form (lambda (x) ___________).

(define drop
 (lambda (predicate? input-list)
 (keep _______________ input-list)))

(drop number? '(1 2 a b 3 c 4 d e)) → (a b c d e)
(drop symbol? '(1 2 a b 3 c 4 d e)) → (1 2 3 4)
(drop even? '(1 2 3 4 5)) → (1 3 5)

7. The next few exercises ask you to define new functions using map as a helper. Recall that map takes a one-
argument function f and applies it to each element of a list, returning a new list containing all of the results.
Write the function double-each, which takes a list of numbers and doubles each number, by filling in the
template below.

(define double-each
 (lambda (input-list)
 (map (lambda (n) _______________) input-list)))

(double-each '(1 2 3 4 5)) → (2 4 6 8 10)
(double-each '(3 3 3 3)) → (6 6 6 6)

8. Write the function reciprocals, which takes a list of numbers and returns a new list of the reciprocals of
each number, by filling in the template below.

(define reciprocals
 (lambda (input-list)
 (map (lambda (n) ______________) input-list)))

(reciprocals '(2 3 4 5 6)) → (1/2 1/3 1/4 1/5 1/6)
(reciprocals '(3 3 3 3)) → (1/3 1/3 1/3 1/3)

9. Write the function x-all, which takes a list of numbers and replaces each number by the symbol x, by
filling in the template below.

(define x-all
 (lambda (input-list)
 (map (lambda (n) ______________) input-list)))

(x-all '(1 2 3 4 5)) → (x x x x x)
(x-all '(3 3 3 3)) → (x x x x)

5. Write the function remove-all, which takes a symbol and an input list, and removes all occurrences of the
specified symbol from the list, by filling in the template below with a lambda expression of the form
(lambda (x) ___________).

(define remove-all
 (lambda (symbol input-list)
 (keep _______________ input-list)))

(remove-all 'x '(a b x a b x x b x)) → (a b a b b)
(remove-all 'b '(a b x a b x x b x)) → (a x a x x x)

6. Write the function drop, which takes a predicate function and an input list, and removes all elements from
the list that satisfy the given predicate function, by filling in the template below with a lambda expression of
the form (lambda (x) ___________).

(define drop
 (lambda (predicate? input-list)
 (keep _______________ input-list)))

(drop number? '(1 2 a b 3 c 4 d e)) → (a b c d e)
(drop symbol? '(1 2 a b 3 c 4 d e)) → (1 2 3 4)
(drop even? '(1 2 3 4 5)) → (1 3 5)

7. The next few exercises ask you to define new functions using map as a helper. Recall that map takes a one-
argument function f and applies it to each element of a list, returning a new list containing all of the results.
Write the function double-each, which takes a list of numbers and doubles each number, by filling in the
template below.

(define double-each
 (lambda (input-list)
 (map (lambda (n) _______________) input-list)))

(double-each '(1 2 3 4 5)) → (2 4 6 8 10)
(double-each '(3 3 3 3)) → (6 6 6 6)

8. Write the function reciprocals, which takes a list of numbers and returns a new list of the reciprocals of
each number, by filling in the template below.

(define reciprocals
 (lambda (input-list)
 (map (lambda (n) ______________) input-list)))

(reciprocals '(2 3 4 5 6)) → (1/2 1/3 1/4 1/5 1/6)
(reciprocals '(3 3 3 3)) → (1/3 1/3 1/3 1/3)

9. Write the function x-all, which takes a list of numbers and replaces each number by the symbol x, by
filling in the template below.

(define x-all
 (lambda (input-list)
 (map (lambda (n) ______________) input-list)))

(x-all '(1 2 3 4 5)) → (x x x x x)
(x-all '(3 3 3 3)) → (x x x x)

10. Write the function x-odd, which takes a list of numbers and replaces each odd number by the symbol x, but
leaves the even numbers as they are. Hint: use an if or cond expression in your lambda function.

(define x-odd
 (lambda (input-list)
 (map (lambda (n) ______________) input-list)))

(x-odd '(1 2 3 4 5)) → (x 2 x 4 x)
(x-odd '(3 3 3 3)) → (x x x x)
(x-odd '(2 4 6 8)) → (2 4 6 8)

11. Write the function classify-nums, which takes a list of numbers and replaces each odd number by the
symbol odd and each even number by the symbol even.

(define classify-nums
 (lambda (input-list)
 (map (lambda (n) ______________) input-list)))

(classify-nums '(1 2 3 4 5)) → (odd even odd even odd)
(classify-nums '(3 3 3 3)) → (odd odd odd odd)
(classify-nums '(2 4 6 8)) → (even even even even)

12. Write the function swap, which takes an old symbol, a new symbol, and a list of symbols, and replaces each
old symbol by the new symbol, and vice versa. Other symbols should remain as they are.

(define swap
 (lambda (old new input-list)
 (map (lambda (x) ______________) input-list)))

(swap 'red 'blue '(red fish blue fish red)) → (blue fish red fish blue)
(swap 'eggs 'ham '(green eggs and ham and eggs)) → (green ham and eggs and ham)

13. Write the function pair-up, which takes a symbol and an input list, and pairs up the symbol with each
element of the input list. Hint: use the list function inside your lambda expression.

(define pair-up
 (lambda (symbol input-list)
 (map (lambda (x) ______________) input-list)))

(pair-up 'x '(a b c d)) → ((x a) (x b) (x c) (x d))
(pair-up 'a '(1 2 3 4 5)) → ((a 1) (a 2) (a 3) (a 4) (a 5))

14. Write the function firsts, which takes a list of 2-element inner lists, and returns a new list containing just
the first element of each inner list.

(define firsts
 (lambda (input-list)
 (map (lambda (x) ______________) input-list)))

(firsts '((red hot) (chili dogs))) → (red chili)
(firsts '((spanish paella) (red wine) (salsa beans))) → (spanish red salsa)

15. Write the function seconds, which takes a list of 2-element inner lists, and returns a new list containing just
the second element of each inner list.

(define seconds
 (lambda (input-list)
 (map (lambda (x) ______________) input-list)))

(seconds '((red hot) (chili dogs))) → (hot dogs)
(seconds '((spanish paella) (red wine) (salsa beans))) → (paella wine beans)

10. Write the function x-odd, which takes a list of numbers and replaces each odd number by the symbol x, but
leaves the even numbers as they are. Hint: use an if or cond expression in your lambda function.

(define x-odd
 (lambda (input-list)
 (map (lambda (n) ______________) input-list)))

(x-odd '(1 2 3 4 5)) → (x 2 x 4 x)
(x-odd '(3 3 3 3)) → (x x x x)
(x-odd '(2 4 6 8)) → (2 4 6 8)

11. Write the function classify-nums, which takes a list of numbers and replaces each odd number by the
symbol odd and each even number by the symbol even.

(define classify-nums
 (lambda (input-list)
 (map (lambda (n) ______________) input-list)))

(classify-nums '(1 2 3 4 5)) → (odd even odd even odd)
(classify-nums '(3 3 3 3)) → (odd odd odd odd)
(classify-nums '(2 4 6 8)) → (even even even even)

12. Write the function swap, which takes an old symbol, a new symbol, and a list of symbols, and replaces each
old symbol by the new symbol, and vice versa. Other symbols should remain as they are.

(define swap
 (lambda (old new input-list)
 (map (lambda (x) ______________) input-list)))

(swap 'red 'blue '(red fish blue fish red)) → (blue fish red fish blue)
(swap 'eggs 'ham '(green eggs and ham and eggs)) → (green ham and eggs and ham)

13. Write the function pair-up, which takes a symbol and an input list, and pairs up the symbol with each
element of the input list. Hint: use the list function inside your lambda expression.

(define pair-up
 (lambda (symbol input-list)
 (map (lambda (x) ______________) input-list)))

(pair-up 'x '(a b c d)) → ((x a) (x b) (x c) (x d))
(pair-up 'a '(1 2 3 4 5)) → ((a 1) (a 2) (a 3) (a 4) (a 5))

14. Write the function firsts, which takes a list of 2-element inner lists, and returns a new list containing just
the first element of each inner list.

(define firsts
 (lambda (input-list)
 (map (lambda (x) ______________) input-list)))

(firsts '((red hot) (chili dogs))) → (red chili)
(firsts '((spanish paella) (red wine) (salsa beans))) → (spanish red salsa)

15. Write the function seconds, which takes a list of 2-element inner lists, and returns a new list containing just
the second element of each inner list.

(define seconds
 (lambda (input-list)
 (map (lambda (x) ______________) input-list)))

(seconds '((red hot) (chili dogs))) → (hot dogs)
(seconds '((spanish paella) (red wine) (salsa beans))) → (paella wine beans)

16. In class, we wrote the function reduce, shown below, which captures the general pattern of recursion over a
list of elements.

(define reduce
 (lambda (input-list base-value combiner)
 (cond
 [(null? input-list) base-value]
 [else (combiner (car input-list)
 (reduce (cdr input-list) base-value combiner))])))

The following three functions all share the same underlying pattern. The only difference between them is
the value returned in the base case, and the way in which the car element is combined with the result of the
recursion on the cdr of the input list. The function length counts the number of elements in the input list.
The function add-to-end adds a new symbol to the end of a list. The function count counts the number
of occurrences of a symbol in a list.

(define length
 (lambda (input-list)
 (cond
 [(null? input-list) 0]
 [else (+ 1 (length (cdr input-list)))])))

(define add-to-end
 (lambda (symbol input-list)
 (cond
 [(null? input-list) (list symbol)]
 [else (cons (car input-list) (add-to-end symbol (cdr input-list)))])))

(define count
 (lambda (symbol input-list)
 (cond
 [(null? input-list) 0]
 [(equal? (car input-list) symbol) (+ 1 (count symbol (cdr input-list)))]
 [else (count symbol (cdr input-list))])))

Rewrite each of these functions in terms of reduce by filling in the templates below with the appropriate
base-case value in slot 1 and an expression in slot 2 that will combine the car element with the result of the
recursion in an appropriate way. In the lambda expressions, the x parameter represents the car element, and
the r parameter represents the result of calling the recursion on the cdr of the input list.

(define length
 (lambda (input-list)
 (reduce input-list 1 (lambda (x r) 2))))

(define add-to-end
 (lambda (symbol input-list)
 (reduce input-list 1 (lambda (x r) 2))))

(define count
 (lambda (symbol input-list)
 (reduce input-list 1 (lambda (x r) 2))))

17. EXTRA CREDIT CHALLENGE: Define new versions of the functions map, keep, and drop, called
map2, keep2, and drop2, in terms of reduce by filling in the templates below appropriately.

(define map2
 (lambda (f input-list)
 (reduce input-list (lambda (x r)))))

(define keep2
 (lambda (predicate? input-list)
 (reduce input-list (lambda (x r)))))

(define drop2
 (lambda (predicate? input-list)
 (reduce input-list (lambda (x r)))))

16. In class, we wrote the function reduce, shown below, which captures the general pattern of recursion over a
list of elements.

(define reduce
 (lambda (input-list base-value combiner)
 (cond
 [(null? input-list) base-value]
 [else (combiner (car input-list)
 (reduce (cdr input-list) base-value combiner))])))

The following three functions all share the same underlying pattern. The only difference between them is
the value returned in the base case, and the way in which the car element is combined with the result of the
recursion on the cdr of the input list. The function length counts the number of elements in the input list.
The function add-to-end adds a new symbol to the end of a list. The function count counts the number
of occurrences of a symbol in a list.

(define length
 (lambda (input-list)
 (cond
 [(null? input-list) 0]
 [else (+ 1 (length (cdr input-list)))])))

(define add-to-end
 (lambda (symbol input-list)
 (cond
 [(null? input-list) (list symbol)]
 [else (cons (car input-list) (add-to-end symbol (cdr input-list)))])))

(define count
 (lambda (symbol input-list)
 (cond
 [(null? input-list) 0]
 [(equal? (car input-list) symbol) (+ 1 (count symbol (cdr input-list)))]
 [else (count symbol (cdr input-list))])))

Rewrite each of these functions in terms of reduce by filling in the templates below with the appropriate
base-case value in slot 1 and an expression in slot 2 that will combine the car element with the result of the
recursion in an appropriate way. In the lambda expressions, the x parameter represents the car element, and
the r parameter represents the result of calling the recursion on the cdr of the input list.

(define length
 (lambda (input-list)
 (reduce input-list 1 (lambda (x r) 2))))

(define add-to-end
 (lambda (symbol input-list)
 (reduce input-list 1 (lambda (x r) 2))))

(define count
 (lambda (symbol input-list)
 (reduce input-list 1 (lambda (x r) 2))))

17. EXTRA CREDIT CHALLENGE: Define new versions of the functions map, keep, and drop, called
map2, keep2, and drop2, in terms of reduce by filling in the templates below appropriately.

(define map2
 (lambda (f input-list)
 (reduce input-list (lambda (x r)))))

(define keep2
 (lambda (predicate? input-list)
 (reduce input-list (lambda (x r)))))

(define drop2
 (lambda (predicate? input-list)
 (reduce input-list (lambda (x r)))))

	Lab 6 – Functional Arguments

