
Lab 8 – Data Abstraction

Suppose that we want to keep a database with information about our friends. In it we'll store their names,
birth dates, and the cities and states in which they live. This database will be organized as a list of records,
where each record contains all of the information about a particular friend. We can represent this abstractly
as follows:

<database> = (<record1> <record2> <record3> . . . <recordN>)

Each record will be represented as a list of “facts” about a person. Each fact is a two-element list containing
(1) a symbolic name for the type of information being represented, and (2) the piece of information itself.

For example, one possible record is shown below:

((name "Jane Doe") (city "New York") (state "NY")
 (birth-month 11) (birth-day 25) (birth-year 2002))

The constructor function make-record is used to create new records:

(define make-record
 (lambda (name city state month day year)
 (list
 (list 'name name)
 (list 'city city)
 (list 'state state)
 (list 'birth-month month)
 (list 'birth-day day)
 (list 'birth-year year))))

The selector function for records is retrieve-info, which takes a type symbol and a record and retrieves
the appropriate information from the record. If the record contains no information of the given type, then the
symbol unknown is returned. For example:

(define rec1 (make-record "Jane Doe" "New York" "NY" 11 25 2002))

(retrieve-info 'name rec1) → "Jane Doe"
(retrieve-info 'state rec1) → "NY"
(retrieve-info 'birth-year rec1) → 2002
(retrieve-info 'shoe-size rec1) → unknown

1. Complete the definition of the retrieve-info function, and test it as shown in the examples above.

 (define retrieve-info
 (lambda (type record)
 ...))

2. A database called mydb is already provided for you for testing purposes, containing records for several
people, including Jane Doe. Add yourself and a few of your friends to this database. Then, using your
retrieve-info function as a helper, define the functions find-record and find-all. These functions each
take as arguments a type symbol, some information of that type, and a database.

 (define find-record
 (lambda (type value database)
 ...))

 (define find-all
 (lambda (type value database)
 ...))

The function find-record returns the first record in the database that contains the given information, or
the symbol unknown if no such record exists. For example:

Lab 8 – Data Abstraction

Suppose that we want to keep a database with information about our friends. In it we'll store their names,
birth dates, and the cities and states in which they live. This database will be organized as a list of records,
where each record contains all of the information about a particular friend. We can represent this abstractly
as follows:

<database> = (<record1> <record2> <record3> . . . <recordN>)

Each record will be represented as a list of “facts” about a person. Each fact is a two-element list containing
(1) a symbolic name for the type of information being represented, and (2) the piece of information itself.

For example, one possible record is shown below:

((name "Jane Doe") (city "New York") (state "NY")
 (birth-month 11) (birth-day 25) (birth-year 2002))

The constructor function make-record is used to create new records:

(define make-record
 (lambda (name city state month day year)
 (list
 (list 'name name)
 (list 'city city)
 (list 'state state)
 (list 'birth-month month)
 (list 'birth-day day)
 (list 'birth-year year))))

The selector function for records is retrieve-info, which takes a type symbol and a record and retrieves
the appropriate information from the record. If the record contains no information of the given type, then the
symbol unknown is returned. For example:

(define rec1 (make-record "Jane Doe" "New York" "NY" 11 25 2002))

(retrieve-info 'name rec1) → "Jane Doe"
(retrieve-info 'state rec1) → "NY"
(retrieve-info 'birth-year rec1) → 2002
(retrieve-info 'shoe-size rec1) → unknown

1. Complete the definition of the retrieve-info function, and test it as shown in the examples above.

 (define retrieve-info
 (lambda (type record)
 ...))

2. A database called mydb is already provided for you for testing purposes, containing records for several
people, including Jane Doe. Add yourself and a few of your friends to this database. Then, using your
retrieve-info function as a helper, define the functions find-record and find-all. These functions each
take as arguments a type symbol, some information of that type, and a database.

 (define find-record
 (lambda (type value database)
 ...))

 (define find-all
 (lambda (type value database)
 ...))

The function find-record returns the first record in the database that contains the given information, or
the symbol unknown if no such record exists. For example:

 (find-record 'city "New York" mydb)

would return Jane Doe's record. The function find-all returns a list of all of the records that contain the
given information. For example:

 (find-all 'city "New York" mydb)

would return a list of records for all people located in New York. IMPORTANT: Both find-record and
find-all are allowed to access information in records ONLY through the retrieve-info function.

3. Next, write the functions retrieve-age, where-is, and send-cards by using the functions find-record and
find-all as helpers. These functions should not depend on the assumption that the database is represented
as a list of records.

 (define retrieve-age
 (lambda (name database)
 ...))

 (define where-is
 (lambda (name database)
 ...))

 (define send-cards
 (lambda (month database)
 ...))

Retrieve-age takes the name of a person, and a database, and returns the person's age (as of 2021), or the
symbol unknown if no such person exists in the database. For example:

 (retrieve-age "Jane Doe" mydb) → 19
 (retrieve-age "Nobody" mydb) → unknown

Where-is takes a person's name, and a database, and returns a list containing the person's city and state, or
the symbol unknown if no such person exists in the database. For example:

 (where-is "Jane Doe" mydb) → ("New York" "NY")
 (where-is "Nobody" mydb) → unknown

Send-cards takes a month number, and a database, and returns a list of the names of all people whose
birthday occurs during the given month. If no one has a birthday in the specified month, the empty list is
returned. Hint: use map. This could be useful for remembering to send birthday cards. For example:

 (send-cards 11 mydb) → ("Jane Doe")

IMPORTANT: These functions should access information in the database ONLY through the functions
retrieve-info, find-record, and find-all.

4. Suppose we wish to change the representation of records as follows. Instead of each record being a list of
symbol-information pairs, a record will now contain a list of all of the type symbols, followed by a list of all
of the information for that record, in the same order as the type symbols. For example, Jane Doe's record
will now look like this:

 ((name city state birth-month birth-day birth-year)
 ("Jane Doe" "New York" "NY" 11 25 2002))

Rewrite the definitions of make-record and retrieve-info to reflect this new representation. These functions
should still take exactly the same arguments as before. Do you need to rewrite any of the functions from
Parts 2 and 3 above? Verify your answer by re-testing all of your higher-level functions using the new
record format.

 (find-record 'city "New York" mydb)

would return Jane Doe's record. The function find-all returns a list of all of the records that contain the
given information. For example:

 (find-all 'city "New York" mydb)

would return a list of records for all people located in New York. IMPORTANT: Both find-record and
find-all are allowed to access information in records ONLY through the retrieve-info function.

3. Next, write the functions retrieve-age, where-is, and send-cards by using the functions find-record and
find-all as helpers. These functions should not depend on the assumption that the database is represented
as a list of records.

 (define retrieve-age
 (lambda (name database)
 ...))

 (define where-is
 (lambda (name database)
 ...))

 (define send-cards
 (lambda (month database)
 ...))

Retrieve-age takes the name of a person, and a database, and returns the person's age (as of 2021), or the
symbol unknown if no such person exists in the database. For example:

 (retrieve-age "Jane Doe" mydb) → 19
 (retrieve-age "Nobody" mydb) → unknown

Where-is takes a person's name, and a database, and returns a list containing the person's city and state, or
the symbol unknown if no such person exists in the database. For example:

 (where-is "Jane Doe" mydb) → ("New York" "NY")
 (where-is "Nobody" mydb) → unknown

Send-cards takes a month number, and a database, and returns a list of the names of all people whose
birthday occurs during the given month. If no one has a birthday in the specified month, the empty list is
returned. Hint: use map. This could be useful for remembering to send birthday cards. For example:

 (send-cards 11 mydb) → ("Jane Doe")

IMPORTANT: These functions should access information in the database ONLY through the functions
retrieve-info, find-record, and find-all.

4. Suppose we wish to change the representation of records as follows. Instead of each record being a list of
symbol-information pairs, a record will now contain a list of all of the type symbols, followed by a list of all
of the information for that record, in the same order as the type symbols. For example, Jane Doe's record
will now look like this:

 ((name city state birth-month birth-day birth-year)
 ("Jane Doe" "New York" "NY" 11 25 2002))

Rewrite the definitions of make-record and retrieve-info to reflect this new representation. These functions
should still take exactly the same arguments as before. Do you need to rewrite any of the functions from
Parts 2 and 3 above? Verify your answer by re-testing all of your higher-level functions using the new
record format.

	Lab 8 – Data Abstraction

