
Lab 5 – (Recursive (Practice (Practice (Practice))))

1. Write the function laugh, which takes a number as input and returns a list containing that many ha symbols.
Your function should behave as shown in the examples below:

(laugh 4) → (ha ha ha ha)
(laugh 0) → ()
(laugh 1) → (ha)

2. Write the function (concat list1 list2), which takes two input lists and returns the concatenation of
the lists — that is, a new list containing all of list1's elements followed by list2's elements, without any inner
parentheses.

(concat '(a b c) '(d e f g)) → (a b c d e f g)
(concat '() '(x y z)) → (x y z)
(concat '(1 2 3 4 5 6 7 8) '(nine ten eleven)) → (1 2 3 4 5 6 7 8 nine ten eleven)

3. Write the function (times-ten numbers), which takes a list of numbers as input, and returns a new list
containing each number from the original list multiplied by 10.

(times-ten '(1 2 3 4 5)) → (10 20 30 40 50)
(times-ten '()) → ()
(times-ten '(7)) → (70)

4. Write the function x-odds, which takes a list of numbers as input, and returns a new list with all of the odd
numbers replaced by the literal symbol x.

(x-odds '(1 2 3 4 5 9)) → (x 2 x 4 x x)
(x-odds '(2 4 6)) → (2 4 6)
(x-odds '(1 3 5)) → (x x x)

5. Write the function classify-nums, which takes a list of numbers as input, and returns a new list with all
odd numbers replaced by the symbol odd and all even numbers replaced by the symbol even.

(classify-nums '(1 2 3 4 5)) → (odd even odd even odd)
(classify-nums '(7 7 7 9)) → (odd odd odd odd)
(classify-nums '(8)) → (even)

6. In class on Tuesday, we wrote the functions remove-one and subst-one. Using these functions as a
guide, write the function insertL-one, which takes a new symbol, an old symbol, and an input list, and
inserts the new symbol to the left of the first occurrence of the old symbol in the input list.

(insertL-one 'frog 'x '(a b c x d x x e)) → (a b c frog x d x x e)
(insertL-one 'frog 'e '(a b c x d x x e)) → (a b c x d x x frog e)
(insertL-one 'frog 'x '()) → ()
(insertL-one 'frog 'x '(a b c d)) → (a b c d)

7. Write the function insertR-one, which takes a new symbol, an old symbol, and an input list, and inserts
the new symbol to the right of the first occurrence of the old symbol in the input list.

(insertR-one 'frog 'x '(a b c x d x x e)) → (a b c x frog d x x e)
(insertR-one 'frog 'e '(a b c x d x x e)) → (a b c x d x x e frog)
(insertR-one 'frog 'x '()) → ()
(insertR-one 'frog 'x '(a b c d)) → (a b c d)

Lab 5 – (Recursive (Practice (Practice (Practice))))

1. Write the function laugh, which takes a number as input and returns a list containing that many ha symbols.
Your function should behave as shown in the examples below:

(laugh 4) → (ha ha ha ha)
(laugh 0) → ()
(laugh 1) → (ha)

2. Write the function (concat list1 list2), which takes two input lists and returns the concatenation of
the lists — that is, a new list containing all of list1's elements followed by list2's elements, without any inner
parentheses.

(concat '(a b c) '(d e f g)) → (a b c d e f g)
(concat '() '(x y z)) → (x y z)
(concat '(1 2 3 4 5 6 7 8) '(nine ten eleven)) → (1 2 3 4 5 6 7 8 nine ten eleven)

3. Write the function (times-ten numbers), which takes a list of numbers as input, and returns a new list
containing each number from the original list multiplied by 10.

(times-ten '(1 2 3 4 5)) → (10 20 30 40 50)
(times-ten '()) → ()
(times-ten '(7)) → (70)

4. Write the function x-odds, which takes a list of numbers as input, and returns a new list with all of the odd
numbers replaced by the literal symbol x.

(x-odds '(1 2 3 4 5 9)) → (x 2 x 4 x x)
(x-odds '(2 4 6)) → (2 4 6)
(x-odds '(1 3 5)) → (x x x)

5. Write the function classify-nums, which takes a list of numbers as input, and returns a new list with all
odd numbers replaced by the symbol odd and all even numbers replaced by the symbol even.

(classify-nums '(1 2 3 4 5)) → (odd even odd even odd)
(classify-nums '(7 7 7 9)) → (odd odd odd odd)
(classify-nums '(8)) → (even)

6. In class on Tuesday, we wrote the functions remove-one and subst-one. Using these functions as a
guide, write the function insertL-one, which takes a new symbol, an old symbol, and an input list, and
inserts the new symbol to the left of the first occurrence of the old symbol in the input list.

(insertL-one 'frog 'x '(a b c x d x x e)) → (a b c frog x d x x e)
(insertL-one 'frog 'e '(a b c x d x x e)) → (a b c x d x x frog e)
(insertL-one 'frog 'x '()) → ()
(insertL-one 'frog 'x '(a b c d)) → (a b c d)

7. Write the function insertR-one, which takes a new symbol, an old symbol, and an input list, and inserts
the new symbol to the right of the first occurrence of the old symbol in the input list.

(insertR-one 'frog 'x '(a b c x d x x e)) → (a b c x frog d x x e)
(insertR-one 'frog 'e '(a b c x d x x e)) → (a b c x d x x e frog)
(insertR-one 'frog 'x '()) → ()
(insertR-one 'frog 'x '(a b c d)) → (a b c d)

8. We also wrote the functions remove-all and subst-all. Using these functions as a guide, write the
function insertL-all, which takes a new symbol, an old symbol, and an input list, and inserts the new
symbol to the left of every occurrence of the old symbol in the input list.

(insertL-all 'frog 'x '(a b c x d x x e)) → (a b c frog x d frog x frog x e)
(insertL-all 'frog 'e '(a b c x d x x e)) → (a b c x d x x frog e)
(insertL-all 'frog 'x '()) → ()
(insertL-all 'frog 'x '(a b c d)) → (a b c d)

9. Write the function insertR-all, which takes a new symbol, an old symbol, and an input list, and inserts
the new symbol to the right of every occurrence of the old symbol in the input list.

(insertR-all 'frog 'x '(a b c x d x x e)) → (a b c x frog d x frog x frog e)
(insertR-all 'frog 'e '(a b c x d x x e)) → (a b c x d x x e frog)
(insertR-all 'frog 'x '()) → ()
(insertR-all 'frog 'x '(a b c d)) → (a b c d)

10. Write the function every-other, which takes an input list and returns a new list containing every other
element of the original list. Hint: you will need to check for two different base cases.

(every-other '(a b c d e f g)) → (a c e g)
(every-other '(a b c d e)) → (a c e)
(every-other '(a b c d)) → (a c)
(every-other '(a)) → (a)

11. Write the function (zip list1 list2), which takes two input lists of the same length and forms a new
list of lists by combining the corresponding elements of list1 and list2 into “pairs”, as shown below.

(zip '(1 2 3 4) '(a b c d)) → ((1 a) (2 b) (3 c) (4 d))
(zip '(a) '(b)) → ((a b))
(zip '() '()) → ()

12. Write the function (pair-up symbol input-list), which takes a symbol and a list as input and creates
a new list consisting of the symbol paired up with each element of the input list, as shown below.

(pair-up 'x '(a b c d e)) → ((x a) (x b) (x c) (x d) (x e))
(pair-up 'nothing '()) → ()
(pair-up 'thing '(one two)) → ((thing one) (thing two))
(pair-up 'hee '(hee)) → ((hee hee))

13. Write the function (cross-product list1 list2), which takes two input lists and returns all elements
of list1 paired up with all elements of list2 as shown in the examples below. Hint: use your pair-up and
concat functions as helpers.

(cross-product '(a b c) '(1 2)) → ((a 1) (a 2) (b 1) (b 2) (c 1) (c 2))
(cross-product '(a b c) '()) → ()
(cross-product '() '(a b c)) → ()

14. Write the function increasing-order?, which takes a list of numbers and returns #t if all numbers in the
list are in increasing order from left to right, or #f otherwise. Adjacent numbers that are equal should be
considered to be in “increasing” order.

(increasing-order? '(1 2 3 4 7 9)) → #t
(increasing-order? '(1 1 1 5 5 8)) → #t
(increasing-order? '(7 9 8 10 12)) → #f

8. We also wrote the functions remove-all and subst-all. Using these functions as a guide, write the
function insertL-all, which takes a new symbol, an old symbol, and an input list, and inserts the new
symbol to the left of every occurrence of the old symbol in the input list.

(insertL-all 'frog 'x '(a b c x d x x e)) → (a b c frog x d frog x frog x e)
(insertL-all 'frog 'e '(a b c x d x x e)) → (a b c x d x x frog e)
(insertL-all 'frog 'x '()) → ()
(insertL-all 'frog 'x '(a b c d)) → (a b c d)

9. Write the function insertR-all, which takes a new symbol, an old symbol, and an input list, and inserts
the new symbol to the right of every occurrence of the old symbol in the input list.

(insertR-all 'frog 'x '(a b c x d x x e)) → (a b c x frog d x frog x frog e)
(insertR-all 'frog 'e '(a b c x d x x e)) → (a b c x d x x e frog)
(insertR-all 'frog 'x '()) → ()
(insertR-all 'frog 'x '(a b c d)) → (a b c d)

10. Write the function every-other, which takes an input list and returns a new list containing every other
element of the original list. Hint: you will need to check for two different base cases.

(every-other '(a b c d e f g)) → (a c e g)
(every-other '(a b c d e)) → (a c e)
(every-other '(a b c d)) → (a c)
(every-other '(a)) → (a)

11. Write the function (zip list1 list2), which takes two input lists of the same length and forms a new
list of lists by combining the corresponding elements of list1 and list2 into “pairs”, as shown below.

(zip '(1 2 3 4) '(a b c d)) → ((1 a) (2 b) (3 c) (4 d))
(zip '(a) '(b)) → ((a b))
(zip '() '()) → ()

12. Write the function (pair-up symbol input-list), which takes a symbol and a list as input and creates
a new list consisting of the symbol paired up with each element of the input list, as shown below.

(pair-up 'x '(a b c d e)) → ((x a) (x b) (x c) (x d) (x e))
(pair-up 'nothing '()) → ()
(pair-up 'thing '(one two)) → ((thing one) (thing two))
(pair-up 'hee '(hee)) → ((hee hee))

13. Write the function (cross-product list1 list2), which takes two input lists and returns all elements
of list1 paired up with all elements of list2 as shown in the examples below. Hint: use your pair-up and
concat functions as helpers.

(cross-product '(a b c) '(1 2)) → ((a 1) (a 2) (b 1) (b 2) (c 1) (c 2))
(cross-product '(a b c) '()) → ()
(cross-product '() '(a b c)) → ()

14. Write the function increasing-order?, which takes a list of numbers and returns #t if all numbers in the
list are in increasing order from left to right, or #f otherwise. Adjacent numbers that are equal should be
considered to be in “increasing” order.

(increasing-order? '(1 2 3 4 7 9)) → #t
(increasing-order? '(1 1 1 5 5 8)) → #t
(increasing-order? '(7 9 8 10 12)) → #f

	Lab 5 – (Recursive (Practice (Practice (Practice))))

