
The Metacat Project:

A Self-Watching Model of Analogy-Making

James B. Marshall

Douglas R. Hofstadter

Center for Research on Concepts and Cognition

Department of Computer Science

Indiana University

Bloomington, Indiana 47408 USA

fmarshall,dughofg@cogsci.indiana.edu

Keywords: analogy, perception, 
uid-concepts, self-watching, explanation

Abstract

This paper presents a broad overview of the Metacat project, an extension of the Copycat

computer model of 
uid concepts, high-level perception, and analogy-making. Copycat models

the complex, subconscious interplay between concepts and perception that gives rise to the


exible human ability to perceive apparently-dissimilar situations as being \the same". A key

feature of the architecture is the emergence of statistically-robust, high-level behavior from the

interactions of many small, low-level, nondeterministic processing agents. All processing occurs

through the collective actions of many agents working in parallel on di�erent aspects of an

analogy problem, without any higher-level executive process controlling the course of events.

Current work on Metacat is focused on extending the Copycat model in a way that permits it to

create much richer representations of the analogies it makes. This involves incorporating a long-

term memory into the architecture, along with a \self-watching" ability, so that the program

can recognize, remember, and recall important patterns that occur in its own processing as it

solves analogy problems. Using this higher-order \meta-level" information, analogies can be

compared and contrasted in an insightful way, allowing Metacat to understand and explain its

answers in a way that Copycat cannot. Metacat's relationship to other work in AI and cognitive

science is also examined, in particular work on case-based reasoning and derivational analogy.

1 Introduction

This paper describes the Metacat project, an extension of the Copycat computer model of 
uid

concepts, high-level perception, and analogy-making that simulates the complex, subconscious in-

terplay between perception and concepts underlying human creativity [Hofstadter, 1984, Mitchell,

1993, Hofstadter and FARG, 1995]. Copycat operates in an abstract, idealized microworld of anal-

ogy problems that exhibits a surprising degree of subtlety and richness. Almost every imaginable

analogy problem in this microworld admits a wide range of possible answers, although these an-

swers tend to vary greatly in terms of their plausibility or quality, as judged by humans. For some

problems, very high-quality, creative answers can sometimes be discovered, although initially they

may not be obvious at all.

The central theme underlying the Copycat architecture is the emergence of statistically robust

high-level behavior from the interactions of many small, low-level, nondeterministic processing

agents called codelets. All processing in Copycat occurs through the collective actions of many

codelets working in parallel, at di�erent speeds, on di�erent aspects of an analogy problem, without

1



any higher-level executive process directing the course of events. The stochastic behavior of codelets

is dynamically biased by the time-varying pattern of activation in the program's network of concepts

it uses to build up an understanding of an analogy problem. In turn, the context-dependent pattern

of activity in the concept network is itself an emergent consequence of codelet processing. Thus,

Copycat, like connectionist models, lies �rmly within the paradigm of emergent computation. At

the same time, however, it incorporates many ideas from the more traditional paradigm of symbolic

AI, staking out a kind of middle ground between these two opposites. Some further perspectives

on the emergent{symbolic spectrum and Copycat's relationship to it can be found in [Blank et al.,

1992].

For many problems, Copycat's behavior agrees well with human behavior, in terms of the

range and frequencies of the answers it �nds, as well as its ratings of their quality. But a serious

limitation of the model is that it provides only a very crude numerical measure of answer quality.

The program, unlike a human, has essentially no understanding of why an answer is good or bad,

or what is interesting about it, or how it is similar to or di�erent from another answer. Current

work on Metacat is aimed at extending the original Copycat model in a way that allows it to create

much richer representations of the analogies it makes. This involves incorporating a memory into

the model, along with a \self-watching" ability, so that the program can recognize, remember, and

recall important patterns that occur in its own processing as it solves an analogy problem. Using

this higher-order \meta-level" information about answers, gleaned from self-watching, analogies

can be compared and contrasted in an insightful way. The long-term goal of the current research is

to computationally model how meaningful, high-level understanding can emerge dynamically from

a stochastic, 
uid, low-level \subcognitive" substrate.

The paper �rst outlines Copycat's central motivating ideas and its main architectural com-

ponents, which constitute the foundation upon which Metacat builds. The crucial ideas behind

Metacat are then introduced by way of an extended example to illustrate them more concretely.

This leads to a discussion of Metacat's relationship to other work in arti�cial intelligence and

cognitive science, in particular to work on case-based reasoning and derivational analogy.

2 Copycat's Underlying Philosophy

The motivation driving the Copycat project, and thus the Metacat project, is the belief that the

ultimate source of the human mind's remarkable 
exibility and power lies in the dynamic, 
uid

nature of its concepts. A typical human mind can recognize and understand a huge number of

distinct concepts, which get activated in certain situations but not in others. The activation of

a particular set of abstract concepts, in response to various low-level sensory stimuli impinging

from the environment, constitutes an act of perception or understanding of the given situation in

terms of these concepts. This type of perception can occur at extremely high levels of abstraction,

such as when a person hears a piece of music for the �rst time and recognizes it as belonging to a

particular composer or musical style. Indeed, examples of such high-level perception are ubiquitous

in cognition.

A great many concepts are implicitly present simultaneously, to di�erent degrees, in the \halo"

surrounding the core of every concept in the mind. Under the right contextual pressures, these

blurry conceptual boundaries can stretch and conform to the situation at hand. Consider, for

example, a typical American adult's concept of Vietnam. On the surface, this concept refers to

a particular nation located in Southeast Asia. But in the average American mind at least, it is

2



also tightly associated with the huge political and military debacle in which the United States got

mired in the late 1960's and early 1970's, along with all of the internal social and cultural strife that

occurred as a result. This entire complex, political-historical situation is conventionally referred to

in America as simply \Vietnam". Hovering about the central core of this concept are enormous

numbers of other related concepts, some closer in, some farther out|concepts such as communism,

President Nixon, war, social unrest, the Pentagon, rice, 1968, dominos (in the sense of a chain of

dominos falling one by one to communism), failure, and so on. Other concepts clearly lie very far

away from the core: penguins, say, or rollerskates, or computer software. Or do they? Consider

the following humorous quip seen recently on the World Wide Web [Leake, 1996]: \Windows-95:

Microsoft's Vietnam?" Regardless of whether or not one agrees with its sentiment, its meaning is

readily understood. Windows-95, a computer operating system, can be perceived as an instance of

the concept Vietnam. In doing so, an implicit analogy has been made between two complex and

apparently distinct entities, mapping, among other things, the United States onto Microsoft and,

perhaps, ex-U.S. President Richard Nixon onto Microsoft Chairman Bill Gates. It is the complex,


uid nature of concepts in the mind that allows such analogies to be e�ortlessly perceived and

understood.

Copycat's central aim is to take concepts seriously. It is our belief that the task of modeling

the nature of concepts themselves has unfortunately been neglected all too often by researchers

in cognitive modeling. We feel that most computational models currently claiming to operate in

so-called \real-world" domains have essentially no deep understanding of the concepts they purport

to deal with. In contrast, our approach is to start with a simple, yet rich, microdomain in which

interesting cognitive phenomena can be carefully studied, and to make a real e�ort to model the

dynamic, 
uid properties of the concepts that give rise to the capacity for very 
exible, abstract

perception and analogy-making exhibited by humans on problems taken from this domain. The

apparent simplicity of Copycat's domain, however, is deceptive, for it turns out to be an extremely

di�cult task to build a computer program capable of exhibiting a level of 
exibility and creativity

comparable to human behavior even in this tiny, restricted domain. We believe that realizing such a

program would go a long way toward a genuine understanding of the powerful yet subtle conceptual

machinery underlying human cognition.

3 A Sketch of Copycat's Architecture

A detailed exposition of the Copycat model can be found in [Mitchell, 1993] and [Hofstadter and

FARG, 1995]. Here we shall give just a brief overview. Copycat perceives analogies between

short strings of letters, which can be thought of as representing abstract, idealized situations.

An example of such an analogy might be \If abc changes to abd, how does iijjkk change in

an analogous way?" Despite its apparent simplicity, the letter-string domain actually exhibits a

remarkable degree of subtlety, and constitutes an ideal laboratory in which to study analogy-making

and high-level perception. An interesting feature of such problems is that there is no single \right"

answer; rather, a range of answers is always possible for each problem. For the previous example,

some possible answers might be iijjll, iijjdd, iijjkl, iijjkd, iijjkk, iikjkk, iidjkk, or even abd or

aabbdd. For most analogy problems, some answers are consistently judged by people to be better

than others. But a surprisingly large number of defensible answers can usually be found for each

problem. Furthermore, for some problems, the answers judged to be the \best" are not at all the

most obvious ones. Figure 1 shows Copycat's typical behavior on the above analogy problem. An

answer's frequency can be interpreted as a measure of its \obviousness" to the program, while an

3



answer's quality is measured by its associated \temperature" value, about which more will be said

below.

3.1 Perceptual activity in the Workspace

In order to discover an answer to an analogy problem such as \abc ) abd; iijjkk ) ?", codelets

work together to build up a strong, coherent mapping between the initial string abc and the target

string iijjkk, and also between the initial string and the modi�ed string abd. These strings reside

in the Workspace component of Copycat's architecture, which is where all perceptual activity takes

place. Codelets also build hierarchical groups within strings, which serve to organize the raw

perceptual data (the letters) into a coherent, chunked whole. For example, in the string iijjkk,

codelets might build three \sameness-groups" ii, jj, and kk, and then a higher-level \successorship-

group" comprised of these three groups encompassing the entire string. The distributed nature of

codelet processing interleaves the chunking process with the mapping process, and as a result, each

process in
uences and drives the other.

A mapping consists of a set of bridges between corresponding letters or groups that play respec-

tively similar roles in di�erent strings. Each bridge is supported by a set of concept-mappings that

together provide justi�cation for perceiving the objects connected by the bridge as corresponding

to one another. For example, a bridge might be built between a in abc and the group ii in iijjkk,

supported by the concept-mappings leftmost ) leftmost and letter ) group, which represent the

idea that both objects are leftmost in their strings, and one is a letter and the other a group.

Non-identity concept-mappings such as letter ) group are called slippages, and form the basis of

Copycat's ability to 
exibly perceive super�cially-dissimilar situations as being in fact \the same"

at some appropriate level of description.

In addition to bridges and groups, another type of structure is necessary to produce an answer

to an analogy problem. Once a mapping has been built between the initial string and the modi�ed

string (i.e., between abc and abd), a rule based on this mapping must be created that succinctly

captures the way in which the initial string changes. Of course, there are many possible ways

of describing this change, some more abstract than others. For example, two possible rules for

abc ) abd are Change letter-category of rightmost letter to successor and Change letter-category

of rightmost letter to d. Di�erent ways of looking at the initial/modi�ed change, combined with

di�erent ways of building the initial/target mapping, give rise to di�erent answers. A bridge from

the letter c in abc to the group kk in iijjkk, based on a letter ) group slippage, may yield the

answer iijjll or iijjdd, depending on the rule used to describe abc ) abd. On the other hand, a

bridge from c to the rightmost letter k in iijjkk may instead yield iijjkl or iijjkd as an answer,

again depending on the rule. To produce an answer, the slippages underlying the mapping between

abc and iijjkk are used by codelets to \translate" the rule describing abc ) abd into a new rule

that applies to iijjkk, such as Change letter-category of rightmost group to successor. Figure 2

shows a screen dump of the Workspace after the program has found the answer iijjll, illustrating

the various Workspace structures involved in producing the answer.

3.2 Conceptual activity in the Slipnet

Actively in
uencing the perceptual activity occurring in the Workspace are the concepts that the

program understands, which reside in the \long-term memory" component of Copycat, called the

Slipnet. Most perceptual structures in the Workspace are, in fact, instances of particular Slipnet

4



concepts. The Slipnet serves as the program's permanent repository of knowledge about its domain.

It contains representations for various concepts relevant to solving letter-string analogies, such as

successor, predecessor, the idea of opposite, the letters a, b, c, and so on, as well as an assessment

of each concept's intrinsic degree of abstractness, called its conceptual depth. It also contains

information about how these concepts relate to each other, including the inherent \associative

distances" between them, which determine the propensities for various conceptual slippages to

occur. A conceptual slippage between a pair of concepts occurs whenever two Workspace instances

of the concepts are seen as playing identical roles in di�erent contexts. For example, in order for

codelets to build a bridge between the rightmost letter c in abc and the rightmost kk group in

iijjkk, a letter ) group slippage must occur. The probability of this happening is governed by the

distance between the letter and group concepts in the Slipnet.

Although the Slipnet contains permanent information, it is not a static structure. Over the

course of a run, in
uenced by the perceptual activity occurring in the Workspace, concepts in the

Slipnet assume di�erent levels of activation; as this happens, distances between concepts grow and

shrink, changing the propensities for various slippages to occur. Conceptual activity in the Slipnet

thus in
uences, and is in
uenced by, perceptual activity in the Workspace; together this results in

a tightly-coupled feedback loop between these two architectural components.

In some ways, the Slipnet is similar to a traditional semantic network, in that it consists of a set

of nodes connected by links. Each of these links has an intrinsic length that re
ects the degree of

association between the linked nodes, with shorter links connecting strongly associated nodes and

longer links connecting weakly associated nodes. Each node corresponds to an individual concept,

or rather, to the core of an individual concept. A concept is more properly thought of as being

represented by a di�use region in the Slipnet centered on a single node. Nodes connected to the

core node by links are included in the central node's \conceptual halo" as a probabilistic function

of the link lengths. This allows single nodes to be shared among several di�erent concepts at once,

depending on the links involved. Thus, concepts in the Slipnet are not sharply de�ned; rather, they

are inherently blurry, and can overlap to varying degrees.

The model incorporates a simple numerical measure of overall Workspace \coherence", called

temperature, which re
ects, at any given moment, the amount and quality of structures built so far.

Temperature values range from 0{100, with lower values indicating a higher degree of Workspace

organization. Temperature is computed as a numerical function of the strength values of all of

the structures existing in the Workspace, weighted by each structure's relative importance. A

structure's strength value represents an estimate of how well the structure \�ts into" the current

set of mappings in the Workspace, and is itself a function of the activation levels of concepts in the

Slipnet. For example, if the group concept in the Slipnet is highly activated, a bridge between a in

abc and the leftmost letter i in iijjkk will tend to have a lower strength than a bridge between c

and kk, because the active group concept encourages the incorporation of groups rather than letters

into the mapping between abc and iijjkk. As more bridges are built involving groups (rather than

letters) in iijjkk, the average strength of structures in the Workspace goes up, causing the overall

Workspace temperature to decrease.

The �nal temperature of the Workspace when an answer is found can be interpreted as an

indication of the answer's overall quality. Thus, high-quality answers are associated with low

temperature, and low-quality answers are associated with high temperature. This measure of

answer quality agrees well with the relative judgments of answer quality given by people for a wide

range of Copycat problems. For example, Copycat's rating of the answer iijjll in the above problem

will tend to be much higher than for \weirder" answers such as iijjkd.

5



3.3 Copycat's weaknesses

Unfortunately, such a simple numerical measure is extremely crude, and re
ects a fundamental

weakness of Copycat: its almost complete lack of any in-depth understanding of the answers it

�nds. Copycat is unable to explain why it considers particular answers to be good or bad. The

reason is that Copycat's processing mechanisms focus almost exclusively on perceiving patterns

and relationships in the perceptual data (the letter strings), while ignoring patterns that occur in

its own processing when solving an analogy problem. Thus, although it may discover an insight-

ful answer for some problem, it lacks any internal representation or knowledge of the underlying

process that led it to discover that answer|knowledge that could provide a basis for explaining

the answer's relative strengths or weaknesses, thereby permitting a much richer assessment of its

quality. Copycat's lack of any such \self-watching" ability stands in marked contrast to people,

who are typically able to give an account of why they consider one answer to be better or worse

than another for a particular analogy problem.

For example, an interesting psychological phenomenon related to self-watching, dubbed the

self-explanation e�ect, has been described and studied in the context of students learning to solve

physics problems from examples [Chi et al., 1989, VanLehn et al., 1992]. In this series of stud-

ies, students monitored their own understanding or misunderstanding as they studied worked-out

textbook examples of mechanics problems, generating verbal explanations of the example solutions

in the process. Those students who learned most e�ectively from the examples were consistently

able to generate more detailed and in-depth explanations of their understanding, demonstrating a

greater capacity for accurate monitoring of their own cognitive processes, which in turn reduced

their reliance on worked-out examples in solving subsequent problems. These studies clearly illus-

trate the ability of people to pay attention to patterns in their own thinking.

Another weakness of Copycat is the fact that answers are not retained after they are found.

When the program discovers an answer to a problem, it simply reports its answer, along with the

answer's �nal temperature, and then stops. On subsequent runs of the same problem, no recollection

of previous answers is possible, so there is no way for the program to bring its past experience to

bear on the current situation. This makes comparison of di�erent answers impossible, either within

a single analogy problem or among di�erent problems. Furthermore, any type of learning that

might occur over multiple runs is impossible. However, learning per se was never intended to be a

central focus of the project, since the notion of learning to make \better" Copycat analogies is not

entirely clear.

4 From Copycat to Metacat

The central objective of the Metacat project is to imbue the program with a rich, high-level under-

standing of the answers it �nds|rich enough to allow it to give at least a limited explanation of

an answer's strengths and weaknesses relative to other answers that have previously been found.

This requires not only remembering answers, but also the ability to compare and contrast di�erent

answers to a single problem, or even answers to di�erent problems, based on an in-depth under-

standing of the important ideas behind each answer. In short, it involves the ability to perceive

and remember the essence of each answer found.

In contrast to Copycat, Metacat is able to �nd and remember many di�erent answers during

a single run on a given problem. Whenever it �nds a new answer, rather than simply stopping,

it pauses to display the answer, along with the answer's supporting groups, bridges, concept-

6



mappings, and other Workspace structures. Furthermore, all of this answer-speci�c information,

including the strings themselves, is then packaged together and stored in memory, after which

the program continues searching for alternative answers to the problem. Gradually, over time, a

repertoire of answers builds up in memory, each one containing much more information than just

the answer string itself. Each stored answer represents a di�erent way of interpreting or making

sense of a particular analogy problem. The extra information stored with each answer in memory

serves as the basis for comparing and contrasting the answers with each other.

4.1 Comparing and contrasting answers

As a simple example of comparing and contrasting analogies, consider the problem \abc ) abd;

xyz ) ?". This problem has been discussed at length elsewhere [Mitchell, 1993, Hofstadter and

FARG, 1995], so we summarize brie
y here. In Copycat's letter-string domain, a has no predecessor

and z has no successor. The alphabet is explicitly designed not to \wrap around" from z back to a,

so a straightforward answer based on taking the successor of z in xyz is impossible. One is forced

to adopt a di�erent strategy as a result of this constraint. One way out is simply the literal-minded

answer xyd. On the other hand, if the symmetry between the \opposite" letters a and z is noticed,

then the answer wyz suggests itself, based on seeing abc and xyz as starting at opposite ends of

the alphabet, with abc going to the right based on successorship and xyz going to the left based on

predecessorship. This answer is very elegant, and many people see it as being strongly analogous

to abd, even though it is not at all obvious at �rst.

Copycat's average temperature for xyd is around 22, and around 14 for wyz. People typically

judge wyz to be of higher quality than xyd, so Copycat's judgement of the relative strengths of

these two answers is consistent with human psychological behavior. But here the psychological

plausibility ends. Unlike people, Copycat cannot explain why it thinks wyz is better than xyd.

It has no insight into how it arrives at either answer, and no appreciation of how they di�er,

beyond just a single number. People, however, can quite easily see that the wyz answer depends

critically on the idea of oppositeness, or symmetry: the alphabetic-position symmetry of the letters

a and z, and the directional and relational symmetry of the strings abc and xyz, which go in

opposite directions based on the complementary ideas of successorship and predecessorship. The

xyd answer, on the other hand, is based on the idea of directional and relational sameness: both

abc and xyz are strings based on successorship (or possibly predecessorship) going in the same

direction. The presence or absence of the idea of symmetry is clearly of critical importance in

di�erentiating the two answers xyd and wyz. People can easily point out this distinction, but

Copycat, unable to notice it, remains in the dark.

People are also quite good at recognizing when di�erent answers to di�erent Copycat problems

are somehow similar. Often this similarity is noticed spontaneously, seemingly without any con-

scious e�ort involved. Furthermore, once the similarity has been noticed, people are then able to

say why the answers seem similar, as well as how they di�er. For example, consider the problem

\rst ) rsu; xyz ) ?". One possible answer results from viewing rst ) rsu as changing the

rightmost letter t to its successor, attempting to do the same thing to xyz, failing, and then falling

back on seeing rst ) rsu in a more literal-minded way as a change to the letter u, resulting in the

answer xyu. This answer is rather similar to the xyd answer in the previous problem.

Or consider the answer wyz, gotten by seeing rst and xyz as strings going in the opposite

direction, one based on successorship and the other on predecessorship. This way of interpreting

things is strongly reminiscent of the wyz answer in the previous problem. Indeed, the two answers

7



themselves are exactly the same. However, there is an important di�erence. In \rst) rsu; xyz)

?", there is no alphabetic-position symmetry between r and z, so there is not as much justi�cation

in this problem for seeing rst and xyz as mirror images of each other as there was in the case of

abc and xyz. The presence or absence of alphabetic-position symmetry is the crucial di�erence

between the two wyz answers. Everything else about the answers is the same: both depend on

failing to take the successor of z, as well as on noticing successorship{predecessorship symmetry,

directional symmetry, and seeing the rightmost-letter change abstractly in terms of successorship,

rather than literally as a change to a speci�c letter of the alphabet. The relative lack of justi�cation

for wyz in the second problem tends to diminish its overall quality. While arguably better than

xyu, wyz is not nearly as superior to xyu as was wyz to xyd in the �rst problem. In short, xyd

and xyu play essentially identical roles in their respective problems, and are thus of comparable

quality, while the two wyz answers are quite di�erent, even though on the surface they appear to

be identical.

4.2 Modeling the cognitive level versus the subcognitive level

The reason that Copycat is unable to recognize what makes the wyz answers di�erent from each

other, or what makes xyd and xyu essentially the same, is that, although it uses many ideas

implicitly, it does not build any explicit representations of the central ideas underlying the answers

it �nds, and thus it has nothing on which to base a detailed comparison of its answers. The answers'

associated �nal temperature values simply do not provide enough information.

When Copycat discovers an answer, of course, many Workspace structures exist that, to a

certain extent, characterize the answer just found. In the case of the �rst wyz answer, for instance,

an abstract rule Change letter-category of rightmost letter to successor exists; bridges exist mapping

the left and right letters of abc onto the right and left letters, respectively, of xyz; a bridge exists

mapping the right-directed group abc onto the left-directed group xyz; and slippages involving the

concept of opposite, such as right ) left or successor ) predecessor, support these bridges. But

structures may also exist that have very little bearing on the crux of the matter, such as a bridge

between b in abc and y in xyz, or the concept-mappings letter ) letter or group ) group.

The con�guration of structures in the Workspace collectively represents the way in which a

given analogy problem is interpreted; that is, the way in which the strings are perceived in relation

to one another. A particular interpretation implies a particular answer for the problem. But which

aspects of that interpretation are essential and which are irrelevant remain buried implicitly in the

overall interpretation. Copycat lacks a way to identify and explicitly represent those aspects of

the interpretation that are most important in characterizing the �nal answer. This amounts to

abstracting out an answer's core essence from the many Workspace structures giving rise to it, and

then building an explicit, concrete representation of this abstract essence.

1

Copycat's lack of such an ability, however, is understandable, since it was intended �rst and

foremost to be a model of the subcognitive mechanisms underlying cognition. All of the nonde-

terministic codelet activity occurring in the Workspace|the building of bridges and groups, the

making of slippages, and so on|is intended to represent perceptual activity carried out at the

subcognitive level, below the level of \conscious awareness". In principle, activity occurring at

the subcognitive level is largely inaccessible to the cognitive level, at least in all of its exhausting,

1

Actually, Copycat's �nal temperature measure can be regarded as a very crude attempt at abstracting out

a high-level characterization of an answer from the answer's associated Workspace structures. This \high-level"

characterization, however, is extremely weak, because no ideas pertaining to the answer are represented.

8



�ne-grained detail. In Copycat, no attempt was made to model the cognitive level at all, so it is

hardly surprising that the program has no insight into the answers generated by its subcognitive

mechanisms.

The focus of Metacat is on developing mechanisms that support a higher cognitive level on top

of the existing subcognitive level. To do this, Metacat needs to be able to watch what happens while

its subcognitive mechanisms are building, destroying, and recon�guring Workspace structures in

pursuit of an answer to the problem at hand, and to build explicit representations of this lower-level,

subcognitive perceptual activity. When it �nds an answer, these representations will constitute a

temporal trace of the subcognitive activity that led to the answer. A characterization of the

answer can be formed by abstracting a high-level description of this temporal trace. This high-level

description can then be stored in memory along with the answer itself.

4.3 Sketch of a cognitive-level characterization

In Metacat, the most important type of explanatory information associated with answers in memory

consists of structures called themes. These structures, which get created as the program works on

an analogy problem, explicitly represent important concepts that arise in building the mappings

between the Workspace strings. Themes reside in Metacat's Themespace, which can be thought of as

a special region of the Workspace. They are comprised of Slipnet concepts, and can themselves take

on various levels of activation, according to the extent to which the ideas they represent are present

or absent in the Workspace's con�guration of structures. Bridge themes get created whenever a new

bridge is built between two Workspace structures, based on the concept-mappings underlying the

bridge. For example, in the problem \abc) abd; xyz ) ?", if an a{z bridge is built between the

strings abc and xyz, supported by the concept-mappings �rst ) last, leftmost ) rightmost, and

letter) letter, three bridge themes get created and added to the Themespace: AlphaPos:opposite,

representing the idea of alphabetic-position symmetry; Direction:opposite, representing the idea

of left/right symmetry; and ObjectType:same, representing the idea of mapping objects of the

same type (i.e., letters) onto each other. Other types of themes may get created as a result of other

Workspace structures being built, such as rule themes which characterize the degree of abstractness

of rules.

A newly-created theme starts with zero activation, but receives periodic boosts of activation

from Workspace structures compatible with the idea represented by the theme. The more a partic-

ular idea serves as an organizing principle in the Workspace, the more active the themes associated

with that idea will become. Active themes are intended to represent the awareness of particular as-

pects of an analogy-problem at the cognitive level, as opposed to the subcognitive level. Thus, in the

example above, an active AlphaPos:opposite theme represents an explicit awareness of alphabetic-

position symmetry as a key idea underlying the \mirror-image" interpretation of abc and xyz. The

idea of alphabetic-position symmetry is present implicitly in the Workspace structures making up

the abc{xyz mapping, but the active AlphaPos:opposite theme makes this idea explicit. Themes

are thus higher-order perceptual structures. Whereas Copycat's structures (bridges, groups, etc.)

represent an interpretation of its letter strings, Metacat's themes represent an interpretation of

this interpretation, in the sense that di�erent patterns of active themes emphasize or deemphasize

di�erent aspects of a con�guration of structures in the Workspace.

In addition to storing the answers it �nds in its memory, Metacat maintains, seperately, a

temporal record (called the Trace) of the important events that occur during processing while it

works on some analogy problem. Such events include the explicit recognition of themes important

9



to the problem, which may occur when a theme attains a su�ciently high level of activation.

Another type of important event, of course, is the actual discovery of a new answer. In the latter

case, the themes most active at the time an answer is found represent the answer's key ideas,

and the events recorded in the Trace prior to the discovery of the answer serve as a record of

how the answer was found. This information is stored, along with the answer's other supporting

Workspace structures, in Metacat's memory, forming a high-level characterization of the answer.

In some ways, this idea is similar in 
avor to work on derivational analogy [Carbonell, 1986, Veloso,

1994], in which a system stores temporal traces of a problem-solving session in memory for use in

analogous situations that may arise later, so as to improve the system's level of performance. As

mentioned earlier, however, the focus in Metacat is not on learning to make \better" analogies, or

to make them more \e�ciently", but rather on being able to explain why one analogy is judged to

be more compelling than another.

Returning to the example discussed earlier, as Metacat works on the problems \abc ) abd;

xyz ) ?" or \rst ) rsu; xyz ) ?", it notices interesting events that happen along the way|the

activation of the concept of opposite, for instance, or the recognition of the symmetric relationship

between a and z. As outlined above, whenever it �nds a new answer, it stores a representation of

the answer in memory, incorporating into this representation the most important themes involved in

the discovery of the answer. Figure 3 shows a schematic representation of the contents of Metacat's

memory after having found the four answers described earlier.

Each of the four memory structures in the �gure represents a seperate analogy between letter

strings. The stored information includes the analogy problem itself, the answer found, and the

themes that led the program to discover the answer. The �rst two structures represent the \literal-

minded" answers xyd and xyu, each one based on the theme of mapping the initial and target

strings onto each other in the same direction (i.e., left-to-right) and seeing the change from the

initial string to the modi�ed string in a literal manner (i.e., Change letter-category of rightmost

letter to d or Change letter-category of rightmost letter to u). The third structure represents the

answer wyz for the problem \abc ) abd; xyz ) ?". The themes underlying this answer include

the theme of alphabetic-position oppositeness (i.e., the symmetry between the alphabetic-�rst

letter a and the alphabetic-last letter z), the theme of directional oppositeness (i.e., the symmetry

between the right-directed string abc and the left-directed string xyz), and seeing the abc) abd

change in an abstract way (i.e., Change letter-category of rightmost letter to successor). The fourth

structure, representing the answer wyz for the problem \rst ) rsu; xyz ) ?", is similar, except

that in this case, the theme representing alphabetic-position oppositeness is absent, since in this

problem no �rst ) last slippage between r and z is possible.

Given these four answer-representations in memory, the stage is set for comparing and con-

trasting them based on the thematic information they contain. Clearly, the important di�erence

between the two wyz answers is the absence of the alphabetic-position oppositeness theme in the

rst case. Herein lies the di�erence in quality of wyz as an answer to these two problems. Fur-

thermore, the thematic characterizations of the literal-minded answers xyd and xyu are identical,

re
ecting the absence of qualitative di�erences between them. In fact, it is even possible to see a

kind of \meta-level" analogy between the weak answers xyd and xyu that is qualitatively much

stronger than the corresponding analogy between the two wyz answers, even though in the latter

case the answers are identical, which would at �rst glance seem to suggest that they could not be

more analogous.

10



4.4 Recognizing repetitive behavior

When it �rst tries to solve the problem \abc) abd; xyz) ?", Copycat almost invariably perceives

abc and xyz as going in the same direction. This is certainly a reasonable predisposition. However,

such an interpretation of the situation leads inevitably to an attempt to take the successor of z, since

under this interpretation c and z are seen as corresponding. This attempt fails, and Copycat \hits

a snag". It is forced to reinterpret the situation. Often it circumvents this di�culty by changing

the rule from Change letter-category of rightmost letter to successor to Change letter-category of

rightmost letter to d, leaving intact the same-direction mapping between abc and xyz, which then

yields the answer xyd. More rarely, the mapping itself is broken and eventually replaced by a

mapping based on the opposite a{z symmetry, yielding wyz. Unfortunately, after breaking the

relevant structures, it tends to rebuild exactly those structures that led it to the snag in the �rst

place, often going round and round in circles hitting the snag over and over, until it �nally manages

to stumble on some interpretation that actually yields an answer. In fact, Copycat hits the snag an

average of nine times per run on this problem|sometimes even as often as twenty or thirty times

on certain runs. This is quite unlike typical human behavior. People tend to \get the message"

after attempting some unsuccessful strategy a few times. They are able to recognize that their

strategy isn't working and that they should try something di�erent.

Themes o�er a way to address this problem. In addition to storing the answers it successfully

�nds, Metacat can take advantage of its ability to watch and remember events in its own process-

ing by storing its failures as well. Snags represent one type of possible failure; another is the case

when the program has simply ceased to make any progress in its attempt to understand a situation

(i.e., to build up a su�ciently coherent mapping). When it recognizes a failure situation, it can

store information in its Trace about the themes that are currently active. Later, it can use this

information to recognize when it is approaching a situation similar to the one in which it previ-

ously failed, by comparing the themes that are currently active with those that were active at the

time of failure. By strongly biasing subsequent Workspace activity away from building the types

of structures associated with previous failures, themes can both characterize and actively guide

Metacat's processing, allowing the program �rst to detect and then to avoid the kind of senseless

looping behavior so problematic in Copycat.

5 Relation to Other Work

As the previous discussion may suggest, Metacat touches on many of the issues underlying research

in case-based reasoning (CBR) [Leake, 1996]. Metacat's memory may be thought of as storing

\cases", representing either successes (i.e., the discovery of a new answer) or failures (i.e., hitting

a snag). These cases form a corpus of experience on which the program can draw when faced with

new situations. When it �nds a new answer, its previous experiences may remind it of similar

problems it has seen in the past, allowing it to compare and contrast the answers based on the

thematic information stored with them. It can avoid running into the same troubles over and over

again by using its stored failure experiences to help it recognize and avoid unproductive pathways

it has explored before.

However, there are important di�erences between CBR and Metacat. First of all, even though

Metacat is concerned with solving analogy problems, it is not intended to model problem-solving

per se. Rather, its focus is on modeling the way 
uid concepts allow analogies between di�erent

situations to be perceived in a natural and psychologically plausible manner. It is concerned

11



with analogical perception, not analogical reasoning employed as a method of solving problems

(as in CBR). Furthermore, much CBR work focuses on systems that learn to solve problems in

a progressively faster and more e�cient manner, whereas in Metacat the notion of learning to

perceive analogies with ever increasing e�ciency and speed is of no concern.

Metacat is actually closer to work on derivational analogy than to ordinary case-based ap-

proaches that store only a �nal problem solution. In derivational analogy, an entire trace of a

problem-solving session is stored for future reference, not just the solution produced in the end,

along with a series of annotations describing the conditions under which each step in the solution

was taken [Carbonell, 1986, Veloso, 1994]. In Metacat, the thematic information stored with an

answer summarizes the important concepts and events that together contributed to the discovery

of the answer, much like the temporal problem-solving trace of derivational analogy.

In contrast to derivational analogy, however, the objective of Copycat is to explore how an

understanding of a situation can be achieved via 
uid concepts in its circumscribed domain, and

how this understanding gives rise, as an automatic by-product, to a 
exible and robust ability to see

analogies between apparently disparate situations. Copycat's concepts, to be sure, are but a crude

approximation to the true power and 
exibility of human concepts. Still, there is a sense in which

its concepts really are active, semantic entities within its tiny, idealized world|not just empty

static symbols shunted around by the program. A concept node in the Slipnet|successor-group,

for example|responds to the situation at hand in a continuous, context-dependent way. That is,

the activation level of the node re
ects the degree of perceived relevance or presence of the concept

of successor-group in the Workspace at any given moment. A wide range of super�cially dissimilar

strings can in principle activate it|strings such as abc, ijk, pqrstu, iijjkk, mrrjjj, mmrrrjjjj,

and aababcabcd. Given the program's ability to 
exibly recognize a wide range of instances of the

same concept, some of them quite abstract, we believe it is fair to say that the program's concepts

have at least some small degree of meaningfulness, of genuine semantics, within the con�nes of its

domain.

Metacat's objective is to deepen Copycat's understanding of its answers by incorporating the

ideas of memory, reminding, and self-watching. Many deep ideas from case-based reasoning appear

to be relevant to this aim, such as the storing of experience as a repertoire of cases in memory,

the activation of stored cases by similar current situations, and the issue of analogical similarity

of di�erent situations. Unfortunately, case-based reasoning research concentrates on these issues

at the expense of understanding the nature of concepts. Metacat can be seen as an attempt to

broaden and enrich these important ideas by focusing on them in the context of dynamic, 
uid,

context-sensitive concepts. We worry that CBR's ultimate success, at least as a cognitive model,

will necessarily be limited by its avoidance of this very di�cult but critically important issue.

6 Conclusion

Enriching Metacat's understanding of its answers by incorporating higher-order thematic informa-

tion gleaned from self-watching enables it to perceive abstract similarities and di�erences among

the analogies it makes, e�ectively permitting analogies to be made between analogies. By applying

the same processing mechanisms that it uses to perceive relationships in its perceptual input to the

more abstract task of perceiving relationships among the answers that it �nds, it is able to compare

and contrast answers in a much more interesting way than is possible in Copycat. Endowing Copy-

cat with a sophisticated self-watching capability is the central objective of present e�orts to extend

12



and re�ne the model, and is a logical next step along the road to understanding and capturing the

full richness of high-level perception and analogy-making in a computational framework.

7 Acknowledgements

This research was supported in part by SunMicrosystems Co.Academic Equipment Grant #EDUD-

NAFO-960418 and by grants to the Center for Research on Concepts and Cognition from the College

of Arts and Sciences of Indiana University.

References

[Blank et al., 1992] Blank, D., Meeden, L., and Marshall, J. (1992). Exploring the sym-

bolic/subsymbolic continuum: A case study of RAAM. In Dinsmore, J., editor, The Symbolic

and Connectionist Paradigms: Closing the Gap, pages 113{148. Lawrence Erlbaum Associates,

Hillsdale, NJ.

[Carbonell, 1986] Carbonell, J. (1986). Derivational analogy: A theory of reconstructive prob-

lem solving and expertise acquisition. In Michalski, R., Carbonell, J., and Mitchell, T., editors,

Machine Learning: An Arti�cial Intelligence Approach, Volume II, pages 371{392. Morgan Kauf-

mann, Palo Alto, CA.

[Chi et al., 1989] Chi, M., Bassok, M., Lewis, M., Reimann, P., and Glaser, R. (1989). Self-

explanations: How students study and use examples in learning to solve problems. Cognitive

Science, 13:145{182.

[Hofstadter, 1984] Hofstadter, D. R. (1984). The Copycat project: An experiment in nondetermin-

ism and creative analogies. AI Memo 755, MIT Arti�cial Intelligence Laboratory.

[Hofstadter and FARG, 1995] Hofstadter, D. R. and FARG (1995). Fluid Concepts and Creative

Analogies: Computer Models of the Fundamental Mechanisms of Thought. Basic Books, New

York.

[Leake, 1996] Leake, D. B., editor (1996). Case-Based Reasoning: Experiences, Lessons, & Future

Directions. MIT Press/AAAI Press, Cambridge, MA.

[Mitchell, 1993] Mitchell, M. (1993). Analogy-making as Perception. MIT Press/Bradford Books,

Cambridge, MA.

[VanLehn et al., 1992] VanLehn, K., Jones, R., and Chi, M. (1992). A model of the self-explanation

e�ect. The Journal of the Learning Sciences, 2(1):1{59.

[Veloso, 1994] Veloso, M. (1994). Planning and Learning by Analogical Reasoning. Springer-Verlag,

Berlin.

13



Figure 1: Histogram of Copycat's answers for the problem \abc ) abd; iijjkk ) ?". Numbers

above each bar indicate how often the answer was found in 1000 runs of the program. Temperature

values below each answer represent the program's assessment of the answer's quality (with lower

temperature indicating higher quality). The strange answer iikkll re
ects weaknesses in Copycat's

ability to form coherent groups. For this answer, the program saw jjkk as the \rightmost group"

of iijjkk, which it then changed to kkll.

14



Figure 2: Screen dump of the Workspace after the program has found the answer iijjll for the

problem \abc ) abd; iijjkk ) ?". The concept-mappings supporting the three vertical bridges

are shown along the bottom of the screen. The �nal Workspace temperature for this answer was 27.

15



abc abd xyz wyz;

abc abd xyz; xyd

xyz wyz;rst rsu

xyz;rst rsu xyu

Dir:opp

Dir:opp

Dir:same

Dir:same

AlphaPos:opp

Rule:literal

Rule:abstract

Rule:literal

Rule:abstract

Figure 3: Schematic representation of four analogies stored in Metacat's memory along with the

most important themes that characterize each one.

16


